1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#' Iris classification task.
#'
#' Contains the task (`iris.task`).
#'
#' @name iris.task
#' @references See [datasets::iris].
#' @keywords data
#' @docType data
NULL
#' Sonar classification task.
#'
#' Contains the task (`sonar.task`).
#'
#' @name sonar.task
#' @references See [mlbench::Sonar].
#' @keywords data
#' @docType data
NULL
#' Wisconsin Breast Cancer classification task.
#'
#' Contains the task (`bc.task`).
#'
#' @name bc.task
#' @references See [mlbench::BreastCancer].
#' The column `"Id"` and all incomplete cases have been removed from the task.
#' @keywords data
#' @docType data
NULL
#' PimaIndiansDiabetes classification task.
#'
#' Contains the task (`pid.task`).
#'
#' @name pid.task
#' @references See [mlbench::PimaIndiansDiabetes].
#' Note that this is the uncorrected version from mlbench.
#' @keywords data
#' @docType data
NULL
#' Boston Housing regression task.
#'
#' Contains the task (`bh.task`).
#'
#' @name bh.task
#' @aliases bh.task
#' @references See [mlbench::BostonHousing].
#' @keywords data
#' @docType data
NULL
#' Wisonsin Prognostic Breast Cancer (WPBC) survival task.
#'
#' Contains the task (`wpbc.task`).
#'
#' @name wpbc.task
#' @aliases wpbc.task
#' @references See [TH.data::wpbc].
#' Incomplete cases have been removed from the task.
#' @keywords data
#' @docType data
NULL
#' NCCTG Lung Cancer survival task.
#'
#' Contains the task (`lung.task`).
#'
#' @name lung.task
#' @aliases lung.task
#' @references See [survival::lung].
#' Incomplete cases have been removed from the task.
#' @keywords data
#' @docType data
NULL
#' Motor Trend Car Road Tests clustering task.
#'
#' Contains the task (`mtcars.task`).
#'
#' @name mtcars.task
#' @aliases mtcars.task
#' @references See [datasets::mtcars].
#' @keywords data
#' @docType data
NULL
#' European Union Agricultural Workforces clustering task.
#'
#' Contains the task (`agri.task`).
#'
#' @name agri.task
#' @aliases agri.task
#' @references See [cluster::agriculture].
#' @keywords data
#' @docType data
NULL
#' Iris cost-sensitive classification task.
#'
#' Contains the task (`costiris.task`).
#'
#' @name costiris.task
#' @aliases costiris.task
#' @references See [datasets::iris].
#' The cost matrix was generated artificially following
#'
#' Tu, H.-H. and Lin, H.-T. (2010), One-sided support vector regression for multiclass cost-sensitive classification.
#' In ICML, J. Fürnkranz and T. Joachims, Eds., Omnipress, 1095--1102.
#' @keywords data
#' @docType data
NULL
#' Yeast multilabel classification task.
#'
#' Contains the task (`yeast.task`).
#'
#' @name yeast.task
#' @source <https://archive.ics.uci.edu/ml/datasets/Yeast> (In long instead of wide format)
#' @references Elisseeff, A., & Weston, J. (2001):
#' A kernel method for multi-labelled classification.
#' In Advances in neural information processing systems (pp. 681-687).
#' @keywords data
#' @docType data
NULL
#' J. Muenchow's Ecuador landslide data set
#'
#' Data set created by Jannes Muenchow, University of Erlangen-Nuremberg,
#' Germany.
#' These data should be cited as Muenchow et al. (2012) (see reference below).
#' This publication also contains additional information on data collection and
#' the geomorphology of the area. The data set provded here is (a subset of) the
#' one from the 'natural' part of the RBSF area and corresponds to landslide
#' distribution in the year 2000.
#' @name spatial.task
#'
#' @keywords datasets
#'
#' @docType data
#'
#' @format a `data.frame` with point samples of landslide and
#' non-landslide locations in a study area in the Andes of southern Ecuador.
#'
#' @references Muenchow, J., Brenning, A., Richter, M., 2012. Geomorphic process
#' rates of landslides along a humidity gradient in the tropical Andes.
#' Geomorphology, 139-140: 271-284.
#'
#' Brenning, A., 2005. Spatial prediction models for landslide hazards:
#' review, comparison and evaluation.
#' Natural Hazards and Earth System Sciences, 5(6): 853-862.
NULL
#' Gunpoint functional data classification task.
#'
#' Contains the task (`gunpoint.task`).
#' You have to classify whether a person raises up a gun or just an empty hand.
#'
#' @name gunpoint.task
#' @references See Ratanamahatana, C. A. & Keogh. E. (2004). Everything you know
#' about Dynamic Time Warping is Wrong. Proceedings of SIAM International
#' Conference on Data Mining (SDM05), 506-510.
#' @keywords data
#' @docType data
NULL
#' FuelSubset functional data regression task.
#'
#' Contains the task (`fuelsubset.task`).
#' 2 functional covariates and 1 scalar covariate.
#' You have to predict the heat value of some fuel based on the
#' ultraviolet radiation spectrum and infrared ray radiation and one scalar
#' column called h2o.
#'
#' The features and grids are scaled in the same way as in [FDboost::FDboost].
#'
#' @name fuelsubset.task
#' @references See Brockhaus, S., Scheipl, F., Hothorn, T., & Greven, S. (2015). The functional linear array model. Statistical Modelling, 15(3), 279–300.
#' @keywords data
#' @docType data
NULL
#' Phoneme functional data multilabel classification task.
#'
#' Contains the task (`phoneme.task`).
#' The task contains a single functional covariate and 5 equally big classes (aa, ao, dcl, iy, sh).
#' The aim is to predict the class of the phoneme in the functional.
#' The dataset is contained in the package fda.usc.
#'
#' @name phoneme.task
#' @references
#' F. Ferraty and P. Vieu (2003) "Curve discrimination: a nonparametric functional approach", Computational Statistics and Data Analysis, 44(1-2), 161-173.
#' F. Ferraty and P. Vieu (2006) Nonparametric functional data analysis, New York: Springer.
#' T. Hastie and R. Tibshirani and J. Friedman (2009) The elements of statistical learning: Data mining, inference and prediction, 2nd edn, New York: Springer.
#' @keywords data
#' @docType data
NULL
#' Spam classification task.
#'
#' Contains the task (`spam.task`).
#'
#' @name spam.task
#' @references See [kernlab::spam].
#' @keywords data
#' @docType data
NULL
|