1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
#' @title Constructor for FDA feature extraction methods.
#'
#' @description
#' This can be used to implement custom FDA feature extraction.
#' Takes a `learn` and a `reextract` function along with some optional
#' parameters to those as argument.
#'
#' @param learn (`function(data, target, col, ...)`)\cr
#' Function to learn and extract information on functional column `col`.
#' Arguments are:
#' * data [data.frame]\cr
#' Data.frame containing matricies with one row per observation of a single functional
#' or time series and one column per meahttps://github.com/mlr-org/mlr/pull/2005/conflict?name=R%252FextractFDAFeatures.R&ancestor_oid=bdc5d882cc86adac456842bebf1a2cf9bb0eb648&base_oid=55d472e23f5c3eb8099607bd9f539034d93e82a4&head_oid=4076800589c60b20acc926e5a545df9f73193b65surement time point.
#' All entries need to be numeric.
#' * target (`character(1)`)\cr
#' Name of the target variable. Default: \dQuote{NULL}.
#' The variable is only set to be consistent with the API.
#' * col (`character(1)` | `numeric(1)`)\cr
#' column names or indices, the extraction should be performed on.
#' The function has to return a named list of values.
#' @param reextract (`function(data, target, col, ...)`)\cr
#' Function used for reextracting data in predict phase.
#' Can be equal to `learn`.
#' @param args ([list])\cr
#' Named list of arguments to pass to `learn` via `...`.
#' @param par.set ([ParamSet])\cr
#' Paramset added to the learner if used in conjunction with a [makeExtractFDAFeatsWrapper].
#' Can be `NULL`.`
#' @export
#' @family fda
makeExtractFDAFeatMethod = function(learn, reextract, args = list(), par.set = NULL) {
assertFunction(learn, args = c("data", "target", "col"))
assertFunction(reextract, args = c("data", "target", "col"))
assertList(args, names = "named")
assertClass(par.set, classes = "ParamSet", null.ok = TRUE)
setClasses(list(learn = learn, reextract = reextract, args = args, par.set = par.set), "extractFDAFeatMethod")
}
#' @title Fast Fourier transform features.
#'
#' @description
#' The function extracts features from functional data based on the fast fourier
#' transform. For more details refer to [stats::fft].
#'
#' @param trafo.coeff (`character(1)`)\cr
#' Specifies which transformation of the complex frequency domain
#' representation should be calculated as a feature representation.
#' Must be one of \dQuote{amplitude} or \dQuote{phase}.
#' Default is \dQuote{phase}.
#' The phase shift is returned in Rad, i.e. values lie in \[-180, 180\].
#' @return ([data.frame]).
#' @export
#' @family fda_featextractor
extractFDAFourier = function(trafo.coeff = "phase") {
# create a function that calls extractFDAFeatFourier
assertChoice(trafo.coeff, choices = c("phase", "amplitude"))
lrn = function(data, target = NULL, col, trafo.coeff) {
assertChoice(trafo.coeff, choices = c("amplitude", "phase"))
return(list(trafo.coeff = trafo.coeff))
}
reextract = function(data, target, col, vals, args) {
data = checkFDCols(data, col)
# Calculate fourier coefficients (row wise) which are complex numbers
fft.trafo = 1 / ncol(data) * t(apply(data, 1, fft))
# Extract amplitude or phase of fourier coefficients which are real numbers
fft.pa = switch(vals$trafo.coeff,
amplitude = signif(apply(fft.trafo, 2, Mod) * 2, 4),
# In some cases the fft values are very small and rounded to 0.
phase = apply(fft.trafo, 2, function(z) {
phase = signif(Arg(z), 6) * 180 / pi # rad to degree
phase[Re(z) < 0.1 / (length(z) + 1)] = 0 # Set numeric (machine) errors to 0
return(phase)
})
)
# If there is only one row in data, fft returns an array
if (!inherits(fft.pa, "matrix")) {
fft.pa = as.data.frame(matrix(fft.pa, nrow = 1))
}
# Add more legible column names to the output
df = as.data.frame(fft.pa)
colnames(df) = stri_paste(vals$trafo.coeff, seq_len(ncol(fft.pa)), sep = ".")
return(df)
}
ps = makeParamSet(makeDiscreteParam("trafo.coeff", values = c("phase", "amplitude")))
makeExtractFDAFeatMethod(
learn = lrn,
reextract = reextract,
args = list(trafo.coeff = trafo.coeff),
par.set = ps
)
}
#' @title Discrete Wavelet transform features.
#'
#' @description
#' The function extracts discrete wavelet transform coefficients from the raw
#' functional data.
#' See [wavelets::dwt] for more information.
#'
#' @param filter (`character(1)`)\cr
#' Specifies which filter should be used.
#' Must be one of `d`|`la`|`bl`|`c` followed by an even
#' number for the level of the filter.
#' The level of the filter needs to be smaller or equal then the time-series length.
#' For more information and acceptable filters see `help(wt.filter)`.
#' Defaults to `la8`.
#' @param boundary (`character(1)`)\cr
#' Boundary to be used.
#' \dQuote{periodic} assumes circular time series,
#' for \dQuote{reflection} the series is extended to twice its length.
#' Default is \dQuote{periodic}.
#' @return ([data.frame]).
#' @export
#' @family fda_featextractor
extractFDAWavelets = function(filter = "la8", boundary = "periodic") {
# All possible values for the filters
filter.vals = c(
paste0("d", c(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)),
paste0("la", c(8, 10, 12, 14, 16, 18, 20)),
paste0("bl", c(14, 18, 20)),
paste0("c", c(6, 12, 18, 24, 30)),
"haar"
)
lrn = function(data, target = NULL, col, ...) {
assertChoice(filter, filter.vals)
assertChoice(boundary, c("periodic", "reflection"))
vals = learnerArgsToControl(list, ...)
return(vals)
}
reextract = function(data, target, col, vals, args) {
requirePackages("wavelets", default.method = "load")
data = checkFDCols(data, col)
# Convert to list of rows and extract wavelets from each time-series.
rowlst = convertRowsToList(data)
wtdata = t(dapply(rowlst, fun = function(x) {
vals$X = as.numeric(x)
wt = do.call(wavelets::dwt, vals)
# Extract wavelet coefficients W and level scaling coeffictients V
unlist(c(wt@W, wt@V[[wt@level]]))
}))
df = as.data.frame(wtdata)
colnames(df) = stri_paste("wav", filter, seq_len(ncol(df)), sep = ".")
return(df)
}
ps = makeParamSet(
makeDiscreteParam("filter", values = filter.vals),
makeDiscreteParam("boundary", values = c("periodic", "reflection"))
)
makeExtractFDAFeatMethod(learn = lrn, reextract = reextract,
args = list(filter = filter, boundary = boundary), par.set = ps)
}
#' @title Extract functional principal component analysis features.
#'
#' @description
#' The function extracts the functional principal components from a data.frame
#' containing functional features. Uses `stats::prcomp`.
#'
#' @param rank. (`integer(1)`)\cr
#' Number of principal components to extract.
#' Default is `NULL`
#' @param center (`logical(1)`) \cr
#' Should data be centered before applying PCA?
#' @param scale. (`logical(1)`) \cr
#' Should data be scaled before applying PCA?
#' @return ([data.frame]).
#' @export
#' @family fda_featextractor
extractFDAFPCA = function(rank. = NULL, center = TRUE, scale. = FALSE) {
assertCount(rank., null.ok = TRUE)
lrn = function(data, target, col, vals, ...) {
# This method only learns the eigenvectors
lst = learnerArgsToControl(list, ...)
lst$x = checkFDCols(data, col)
rst = do.call("prcomp", lst)
return(rst)
}
reextract = function(data, target, col, vals, args) {
data = checkFDCols(data, col)
as.data.frame(predict(vals, data))
}
ps = makeParamSet(
makeIntegerParam("rank.", lower = 1, upper = Inf),
makeLogicalParam("scale."),
makeLogicalParam("center")
)
makeExtractFDAFeatMethod(learn = lrn, reextract = reextract,
args = list(rank. = rank., center = center, scale. = scale.),
par.set = ps)
}
#' @title Bspline mlq features
#'
#' @description
#' The function extracts features from functional data based on the Bspline fit.
#' For more details refer to [FDboost::bsignal()].
#'
#' @param bsignal.knots (`integer(1)`)\cr
#' The number of knots for bspline.
#' @param bsignal.df (`numeric(1)`)\cr
#' The effective degree of freedom of penalized bspline.
#' @return ([data.frame]).
#' @export
#' @family fda_featextractor
extractFDABsignal = function(bsignal.knots = 10L, bsignal.df = 3) {
lrn = function(data, target, col, ...) {
assertInteger(bsignal.knots)
assertNumeric(bsignal.df)
return(list(bsignal.df = bsignal.df, bsignal.knots = bsignal.knots))
}
reextract = function(data, target, col, vals, args) {
data = checkFDCols(data, col)
blrn = FDboost::bsignal(x = data, s = seq_len(ncol(data)), knots = vals$bsignal.knots, degree = vals$bsignal.df)
feats.bsignal = mboost::extract(object = blrn, what = "design") # get the design matrix of the base learner
# Add more legible column names to the output
df = as.data.frame(feats.bsignal)
colnames(df) = stri_paste("bsig", seq_len(ncol(df)), sep = ".")
return(df)
}
ps = makeParamSet(
makeIntegerParam("bsignal.knots", lower = 3L, upper = Inf, default = 10L),
makeNumericParam("bsignal.df", lower = 0.9, upper = Inf, default = 3)
)
makeExtractFDAFeatMethod(
learn = lrn,
reextract = reextract,
args = list(bsignal.knots = bsignal.knots, bsignal.df = bsignal.df),
par.set = ps
)
}
#' @title Time-Series Feature Heuristics
#'
#' @description
#' The function extracts features from functional data based on known Heuristics.
#' For more details refer to [tsfeatures::tsfeatures()].
#' Under the hood this function uses the package [tsfeatures::tsfeatures()].
#' For more information see Hyndman, Wang and Laptev, Large-Scale Unusual Time Series Detection, ICDM 2015.
#'
#' Note: Currently computes the following features:\cr
#' "frequency", "stl_features", "entropy", "acf_features", "arch_stat",
#' "crossing_points", "flat_spots", "hurst", "holt_parameters", "lumpiness",
#' "max_kl_shift", "max_var_shift", "max_level_shift", "stability", "nonlinearity"
#'
#' @param scale (`logical(1)`)\cr
#' If TRUE, time series are scaled to mean 0 and sd 1 before features are computed.
#' @param trim (`logical(1)`)\cr
#' If TRUE, time series are trimmed by `trim_amount` before features are computed.
#' Values larger than trim_amount in absolute value are set to NA.
#' @param trim_amount (`numeric(1)`)\cr
#' Default level of trimming if `trim==TRUE`.
#' @param parallel (`logical(1)`)\cr
#' If `TRUE`, multiple cores (or multiple sessions) will be used.
#' This only speeds things up when there are a large number of time series.
#' @param na.action (`logical(1)`)\cr
#' A function to handle missing values. Use `na.interp` to estimate missing values
#' @param feats (`character`)\cr
#' A character vector of function names to apply to each time-series in order to extract features.\cr
#' Default:\cr
#' feats = c("frequency", "stl_features", "entropy", "acf_features", "arch_stat",
#' "crossing_points", "flat_spots", "hurst", "holt_parameters", "lumpiness",
#' "max_kl_shift", "max_var_shift", "max_level_shift", "stability", "nonlinearity")
#' @param ... (any)\cr
#' Further arguments passed on to the respective tsfeatures functions.
#' @return ([data.frame])
#' @references Hyndman, Wang and Laptev, Large-Scale Unusual Time Series Detection, ICDM 2015.
#' @export
#' @family fda_featextractor
extractFDATsfeatures = function(scale = TRUE, trim = FALSE, trim_amount = 0.1, parallel = FALSE,
na.action = na.pass, feats = NULL, ...) {
if (is.null(feats)) {
feats = c("frequency", "stl_features", "entropy", "acf_features", "arch_stat",
"crossing_points", "flat_spots", "hurst", "holt_parameters", "lumpiness",
"max_kl_shift", "max_var_shift", "max_level_shift", "stability", "nonlinearity")
}
lrn = function(data, target, col, ...) {
assertLogical(scale)
assertLogical(trim)
assertLogical(parallel)
assertNumeric(trim_amount)
assertFunction(na.action)
assertCharacter(feats)
lst = learnerArgsToControl("list", ...)
# Simply pass on parameters
return(c(list(feats = feats, scale = scale, trim = trim, parallel = parallel, trim_amount = trim_amount,
na.action = na.action), lst))
}
reextract = function(data, target = NULL, col, vals) {
data = checkFDCols(data, col)
# Convert to list of rows
rowlst = convertRowsToList(data)
requirePackages("tsfeatures", default.method = "attach")
tsfeats = tsfeatures::tsfeatures(tslist = rowlst, features = vals$feats, scale = vals$scale,
trim = vals$trim, parallel = vals$parallel, trim_amount = vals$trim_amount, na.action = vals$na.action)
# Get rid of series and type columns
tsfeats = data.frame(lapply(tsfeats, as.numeric))
return(tsfeats)
}
ps = makeParamSet(
makeLogicalParam("scale", default = TRUE),
makeLogicalParam("trim", default = FALSE),
makeNumericParam("trim_amount", lower = 0L, upper = 1L, default = 0.1),
makeLogicalParam("parallel", default = FALSE),
makeFunctionParam("na.action", default = na.pass),
makeUntypedParam("feats", default = feats))
makeExtractFDAFeatMethod(
learn = lrn,
reextract = reextract,
args = list(feats = feats, scale = scale, trim = trim, trim_amount = trim_amount, parallel = parallel, na.action = na.action, ...),
par.set = ps
)
}
#' @title DTW kernel features
#'
#' @description
#' The function extracts features from functional data based on the DTW distance with a reference dataframe.
#'
#' @param ref.method (`character(1)`)\cr
#' How should the reference curves be obtained?
#' Method `random` draws `n.refs` random reference curves, while `all` uses all curves as references.
#' In order to use user-provided reference curves, this parameter is set to `fixed`.
#' @param n.refs (`numeric(1)`)\cr
#' Number of reference curves to be drawn (as a fraction of the number of observations in the training data).
#' @param refs (`matrix`|`integer(n)`)\cr
#' Integer vector of training set row indices or a matrix of reference curves with the same length as
#' the functionals in the training data. Overwrites `ref.method` and `n.refs`.
#' @param dtwwindow (`numeric(1)`)\cr
#' Size of the warping window size (as a proportion of query length).
#' @return ([data.frame]).
#' @export
#' @family fda_featextractor
extractFDADTWKernel = function(ref.method = "random", n.refs = 0.05, refs = NULL, dtwwindow = 0.05) {
requirePackages("rucrdtw", default.method = "attach")
# Function that extracts dtw-distances for a single observation and a set of reference
# curves
getDtwDist = function(frow, refs, dtwwindow) {
# Compute dtw distance from the selected row to each reference row
row = vnapply(seq_len(nrow(refs)), function(i) rucrdtw::ucrdtw_vv(frow, refs[i, ], dtwwindow)$distance)
return(row)
}
lrn = function(data, target = NULL, col, ref.method = "random", n.refs = 0.05, refs = NULL, dtwwindow = 0.05) {
assertChoice(ref.method, c("random", "all", "fixed"))
assertNumeric(n.refs, lower = 0, upper = 1)
assertChoice(class(refs), c("matrix", "integer", "NULL"))
assertNumber(dtwwindow)
data = checkFDCols(data, col)
# Obtain reference curves
if (is.null(refs) | is.integer(refs)) {
if (ref.method == "random") {
refs = sample(seq_len(nrow(data)), size = max(min(nrow(data), round(n.refs * nrow(data), 0)), 2L))
}
if (ref.method == "all") {
refs = seq_len(nrow(data))
}
refs.data = data[refs, , drop = FALSE]
} else {
assert_true(nrow(refs) == nrow(data))
refs.data = refs
}
# This method only stores and returns the data points we compare against
return(list(refs = refs.data, dtwwindow = dtwwindow))
}
reextract = function(data, target = NULL, col, vals, args) {
data = checkFDCols(data, col)
feats.dtw = t(apply(data, 1L, function(x) getDtwDist(x, vals$refs, vals$dtwwindow)))
# Add more legible column names to the output
df = as.data.frame(feats.dtw)
colnames(df) = stri_paste("dtw", seq_len(ncol(df)), sep = ".")
return(df)
}
ps = makeParamSet(
makeDiscreteParam(id = "ref.method", default = "random", values = c("random", "all", "fixed")),
makeNumericParam(id = "n.refs", default = 0.05, lower = 0, upper = 1),
makeUntypedParam(id = "refs", default = NULL),
makeNumericParam(id = "dtwwindow", lower = 0, upper = 1)
)
makeExtractFDAFeatMethod(
learn = lrn,
reextract = reextract,
args = list(ref.method = ref.method, n.refs = n.refs, refs = refs, dtwwindow = dtwwindow),
par.set = ps
)
}
#' @title Multiresolution feature extraction.
#'
#' @description
#' The function extracts currently the mean of multiple segments of each curve and stacks them
#' as features. The segments length are set in a hierachy way so the features
#' cover different resolution levels.
#'
#' @param res.level (`integer(1)`)\cr
#' The number of resolution hierachy, each length is divided by a factor of 2.
#' @param shift (`numeric(1)`)\cr
#' The overlapping proportion when slide the window for one step.
#' @param seg.lens (`integer(1)`)\cr
#' Curve subsequence lengths. Needs to sum up to the length of the functional.
#' @return ([data.frame]).
#' @export
#' @family fda_featextractor
extractFDAMultiResFeatures = function(res.level = 3L, shift = 0.5, seg.lens = NULL) {
getCurveFeaturesDF = function(data, res.level = 3L, shift = 0.5) {
feat.list = apply(data, 1, getCurveFeatures, res.level = res.level, shift = shift)
df = data.frame(t(feat.list))
return(df)
}
getFDAMultiResFeatures = function(data, res.level = 3L, shift = 0.5, seg.lens = NULL) {
# Assert that seg.lens sums up to ncol(data)
stopifnot(sum(seg.lens) == ncol(data))
clsum = cumsum(seg.lens)
feat.list = apply(data, 1, function(x) {
# Extract the data from the different subcurves specified by seg.lens
# the start of the seg is clsum - seg.lens + 1, the end of the seg is cumsum(seg.lens)
# ex: seg.lens = c(2, 3, 4), clsum = c(2, 5, 9), clsum - seg.lens +1 = 1, 3, 6
subfeats = Map(function(seqstart, seqend) {
getCurveFeatures(x[seqstart:seqend], res.level = res.level, shift = shift)
}, clsum - seg.lens + 1, cumsum(seg.lens))
# And return as vector
unlist(subfeats)
})
df = data.frame(t(feat.list))
return(df)
}
# Get Features from a single (sub-)curve
getCurveFeatures = function(x, res.level = 3L, shift = 0.5) {
m = length(x)
feats = numeric(0L)
ssize = m # initialize segment size to be the length of the curve
for (rl in seq_len(res.level)) {
# ssize is divided by 2 at the end of the loop
soffset = ceiling(shift * ssize) # overlap distance
sstart = 1L
send = sstart + ssize - 1L # end position
while (send <= m) {
# until the segment reach the end
f = getSegmentFeatures(x[sstart:send])
feats = c(feats, f) # append the feats from the last resolution hierachy
sstart = sstart + soffset
send = send + soffset
}
ssize = ceiling(ssize / 2) # decrease the segment size
if (ssize < 1L) { # if the the divide by 2 is too much
break
}
}
return(feats)
}
getSegmentFeatures = function(x) {
mean(x)
}
lrn = function(data, target, col, res.level = 3L, shift = 0.5, seg.lens = NULL) {
assertCount(res.level)
assertNumber(shift)
assertNumeric(seg.lens, null.ok = TRUE)
list(res.level = res.level, shift = shift, seg.lens = seg.lens)
}
reextract = function(data, target = NULL, col, vals, args) {
data = checkFDCols(data, col)
# The difference is that for the getFDAMultiResFeatures, the curve is again subdivided into
# subcurves from which the features are extracted
if (is.null(vals$seg.lens)) {
df = getCurveFeaturesDF(data = data, res.level = vals$res.level, shift = vals$shift)
} else {
df = getFDAMultiResFeatures(data = data, res.level = vals$res.level, shift = vals$shift, seg.lens = vals$seg.lens)
}
# For res.level=1 make sure we return the correct dimensions
if (is.null(dim(df)) | vals$res.level == 1L) {
df = data.frame(t(df))
}
rownames(df) = NULL
colnames(df) = stri_paste("multires", seq_len(ncol(df)), sep = ".")
return(df)
}
ps = makeParamSet(
makeIntegerParam("res.level", lower = 1L, upper = Inf),
makeNumericParam("shift", lower = 0.001, upper = 1.0)
)
makeExtractFDAFeatMethod(learn = lrn, reextract = reextract,
args = list(res.level = res.level, shift = shift, seg.lens = seg.lens),
par.set = ps)
}
|