1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
#' @title Generate classifier calibration data.
#'
#' @description
#' A calibrated classifier is one where the predicted probability of a class closely matches the
#' rate at which that class occurs, e.g. for data points which are assigned a predicted probability
#' of class A of .8, approximately 80 percent of such points should belong to class A if the classifier
#' is well calibrated. This is estimated empirically by grouping data points with similar predicted
#' probabilities for each class, and plotting the rate of each class within each bin against the
#' predicted probability bins.
#'
#' @family generate_plot_data
#' @family calibration
#' @aliases CalibrationData
#'
#' @template arg_plotroc_obj
#' @param breaks (`character(1)` | [numeric])\cr
#' If `character(1)`, the algorithm to use in generating probability bins.
#' See [hist] for details.
#' If [numeric], the cut points for the bins.
#' Default is \dQuote{Sturges}.
#' @param groups (`integer(1)`)\cr
#' The number of bins to construct.
#' If specified, `breaks` is ignored.
#' Default is `NULL`.
#' @param task.id (`character(1)`)\cr
#' Selected task in [BenchmarkResult] to do plots for, ignored otherwise.
#' Default is first task.
#'
#' @return [CalibrationData]. A [list] containing:
#' \item{proportion}{[data.frame] with columns:
#' \itemize{
#' \item `Learner` Name of learner.
#' \item `bin` Bins calculated according to the `breaks` or `groups` argument.
#' \item `Class` Class labels (for binary classification only the positive class).
#' \item `Proportion` Proportion of observations from class `Class` among all
#' observations with posterior probabilities of class `Class` within the
#' interval given in `bin`.
#' }}
#' \item{data}{[data.frame] with columns:
#' \itemize{
#' \item `Learner` Name of learner.
#' \item `truth` True class label.
#' \item `Class` Class labels (for binary classification only the positive class).
#' \item `Probability` Predicted posterior probability of `Class`.
#' \item `bin` Bin corresponding to `Probability`.
#' }}
#' \item{task}{([TaskDesc])\cr
#' Task description.}
#'
#' @references Vuk, Miha, and Curk, Tomaz. \dQuote{ROC Curve, Lift Chart, and Calibration Plot.} Metodoloski zvezki. Vol. 3. No. 1 (2006): 89-108.
#' @export
generateCalibrationData = function(obj, breaks = "Sturges", groups = NULL, task.id = NULL) {
UseMethod("generateCalibrationData")
}
#' @export
generateCalibrationData.Prediction = function(obj, breaks = "Sturges", groups = NULL, task.id = NULL) {
checkPrediction(obj, task.type = "classif", predict.type = "prob")
generateCalibrationData.list(namedList("prediction", obj), breaks, groups, task.id)
}
#' @export
generateCalibrationData.ResampleResult = function(obj, breaks = "Sturges", groups = NULL, task.id = NULL) {
obj = getRRPredictions(obj)
checkPrediction(obj, task.type = "classif", predict.type = "prob")
generateCalibrationData.Prediction(obj, breaks, groups, task.id)
}
#' @export
generateCalibrationData.BenchmarkResult = function(obj, breaks = "Sturges", groups = NULL, task.id = NULL) {
tids = getBMRTaskIds(obj)
if (is.null(task.id)) {
task.id = tids[1L]
} else {
assertChoice(task.id, tids)
}
obj = getBMRPredictions(obj, task.ids = task.id, as.df = FALSE)[[1L]]
for (x in obj) {
checkPrediction(x, task.type = "classif", predict.type = "prob")
}
generateCalibrationData.list(obj, breaks, groups, task.id)
}
#' @export
generateCalibrationData.list = function(obj, breaks = "Sturges", groups = NULL, task.id = NULL) {
assertList(obj, c("Prediction", "ResampleResult"), min.len = 1L)
## unwrap ResampleResult to Prediction and set default names
if (inherits(obj[[1L]], "ResampleResult")) {
if (is.null(names(obj))) {
names(obj) = extractSubList(obj, "learner.id")
}
obj = extractSubList(obj, "pred", simplify = FALSE)
}
assertList(obj, names = "unique")
td = obj[[1L]]$task.desc
out = lapply(obj, function(pred) {
df = data.table("truth" = getPredictionTruth(pred),
getPredictionProbabilities(pred, cl = getTaskClassLevels(td)))
df = melt(df, id.vars = "truth", value.name = "Probability", variable.name = "Class")
if (is.null(groups)) {
break.points = hist(df$Probability, breaks = breaks, plot = FALSE)$breaks
df$bin = cut(df$Probability, break.points, include.lowest = TRUE, ordered_results = TRUE)
} else {
requirePackages("Hmisc", default.method = "load", why = "Equal width binning of probabilities.")
assertInt(groups, lower = 2, upper = length(unique(df$Probability)))
df$bin = Hmisc::cut2(df$Probability, g = groups, digits = 3)
}
fun = function(x) {
tab = table(x$Class, x$truth)
s = rowSums(tab)
as.list(ifelse(s == 0, 0, diag(tab) / s))
}
list(data = df, proportion = df[, fun(.SD), by = "bin"])
})
data = rbindlist(lapply(out, function(x) x$data), idcol = "Learner", use.names = TRUE)
proportion = rbindlist(lapply(out, function(x) x$proportion), idcol = "Learner", use.names = TRUE)
if (length(td$class.levels) == 2L) {
proportion = proportion[, !td$negative, with = FALSE]
data = data[data$Class != td$negative, ]
}
max.bin = sapply(stri_split(levels(proportion$bin), regex = ",|]|\\)"),
function(x) as.numeric(x[length(x)]))
proportion$bin = ordered(proportion$bin, levels = levels(proportion$bin)[order(max.bin)])
proportion = melt(proportion, id.vars = c("Learner", "bin"), value.name = "Proportion", variable.name = "Class")
data$bin = ordered(data$bin, levels = levels(data$bin)[order(max.bin)])
setDF(data)
setDF(proportion)
makeS3Obj("CalibrationData",
proportion = proportion,
data = data,
task = td)
}
#' @title Plot calibration data using ggplot2.
#'
#' @description
#' Plots calibration data from [generateCalibrationData].
#'
#' @family plot
#' @family calibration
#'
#' @param obj ([CalibrationData])\cr
#' Result of [generateCalibrationData].
#' @param smooth (`logical(1)`)\cr
#' Whether to use a loess smoother.
#' Default is `FALSE`.
#' @param reference (`logical(1)`)\cr
#' Whether to plot a reference line showing perfect calibration.
#' Default is `TRUE`.
#' @param rag (`logical(1)`)\cr
#' Whether to include a rag plot which shows a rug plot on the top which pertains to
#' positive cases and on the bottom which pertains to negative cases.
#' Default is `TRUE`.
#' @template arg_facet_nrow_ncol
#' @template ret_gg2
#' @export
#' @examples
#' \dontshow{ if (requireNamespace("rpart")) \{ }
#' \dontshow{ if (requireNamespace("Hmisc")) \{ }
#' \dontrun{
#' lrns = list(makeLearner("classif.rpart", predict.type = "prob"),
#' makeLearner("classif.nnet", predict.type = "prob"))
#' fit = lapply(lrns, train, task = iris.task)
#' pred = lapply(fit, predict, task = iris.task)
#' names(pred) = c("rpart", "nnet")
#' out = generateCalibrationData(pred, groups = 3)
#' plotCalibration(out)
#'
#' fit = lapply(lrns, train, task = sonar.task)
#' pred = lapply(fit, predict, task = sonar.task)
#' names(pred) = c("rpart", "lda")
#' out = generateCalibrationData(pred)
#' plotCalibration(out)
#' }
#' \dontshow{ \} }
#' \dontshow{ \} }
plotCalibration = function(obj, smooth = FALSE, reference = TRUE, rag = TRUE, facet.wrap.nrow = NULL, facet.wrap.ncol = NULL) {
assertClass(obj, "CalibrationData")
assertFlag(smooth)
assertFlag(reference)
assertFlag(rag)
obj$proportion$xend = length(levels(obj$proportion$bin))
p = ggplot(obj$proportion, aes_string("bin", "Proportion", color = "Class", group = "Class"))
p = p + scale_x_discrete(drop = FALSE)
if (smooth) {
p = p + stat_smooth(se = FALSE, span = 2, method = "loess")
} else {
p = p + geom_point() + geom_line()
}
if (length(unique(obj$proportion$Learner)) > 1L) {
p = p + facet_wrap(~Learner, nrow = facet.wrap.nrow, ncol = facet.wrap.ncol)
}
if (reference) {
p = p + geom_segment(aes_string(1, 0, xend = "xend", yend = 1), colour = "black", linetype = "dashed")
}
if (rag) {
top.data = obj$data[obj$data$truth == obj$data$Class, ]
top.data$x = jitter(as.numeric(top.data$bin))
p = p + geom_rug(data = top.data, aes_string("x", y = 1), sides = "t", alpha = .25)
bottom.data = obj$data[obj$data$truth != obj$data$Class, ]
bottom.data$x = jitter(as.numeric(bottom.data$bin))
p = p + geom_rug(data = bottom.data, aes_string("x", y = 1), sides = "b", alpha = .25)
}
p = p + labs(x = "Probability Bin", y = "Class Proportion")
p + theme(axis.text.x = element_text(angle = 90, hjust = 1))
}
|