1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
#' @title Generate partial dependence.
#' @importFrom data.table data.table melt
#'
#' @description
#' Estimate how the learned prediction function is affected by one or more features.
#' For a learned function f(x) where x is partitioned into x_s and x_c, the partial dependence of
#' f on x_s can be summarized by averaging over x_c and setting x_s to a range of values of interest,
#' estimating E_(x_c)(f(x_s, x_c)). The conditional expectation of f at observation i is estimated similarly.
#' Additionally, partial derivatives of the marginalized function w.r.t. the features can be computed.
#'
#' This function requires the `mmpf` package to be installed. It is currently not on CRAN, but can
#' be installed through GitHub using `devtools::install_github('zmjones/mmpf/pkg')`.
#'
#' @family partial_dependence
#' @family generate_plot_data
#' @aliases PartialDependenceData
#'
#' @param obj ([WrappedModel])\cr
#' Result of [train].
#' @param input ([data.frame] | [Task])\cr
#' Input data.
#' @param features [character]\cr
#' A vector of feature names contained in the training data.
#' If not specified all features in the `input` will be used.
#' @param interaction (`logical(1)`)\cr
#' Whether the `features` should be interacted or not. If `TRUE` then the Cartesian product of the
#' prediction grid for each feature is taken, and the partial dependence at each unique combination of
#' values of the features is estimated. Note that if the length of `features` is greater than two,
#' [plotPartialDependence] cannot be used.
#' If `FALSE` each feature is considered separately. In this case `features` can be much longer
#' than two.
#' Default is `FALSE`.
#' @param derivative (`logical(1)`)\cr
#' Whether or not the partial derivative of the learned function with respect to the features should be
#' estimated. If `TRUE` `interaction` must be `FALSE`. The partial derivative of individual
#' observations may be estimated. Note that computation time increases as the learned prediction function
#' is evaluated at `gridsize` points * the number of points required to estimate the partial derivative.
#' Additional arguments may be passed to [numDeriv::grad] (for regression or survival tasks) or
#' [numDeriv::jacobian] (for classification tasks). Note that functions which are not smooth may
#' result in estimated derivatives of 0 (for points where the function does not change within +/- epsilon)
#' or estimates trending towards +/- infinity (at discontinuities).
#' Default is `FALSE`.
#' @param individual (`logical(1)`)\cr
#' Whether to plot the individual conditional expectation curves rather than the aggregated curve, i.e.,
#' rather than aggregating (using `fun`) the partial dependences of `features`, plot the
#' partial dependences of all observations in `data` across all values of the `features`.
#' The algorithm is developed in Goldstein, Kapelner, Bleich, and Pitkin (2015).
#' Default is `FALSE`.
#' @param fun `function`\cr
#'
#' A function which operates on the output on the predictions made on the `input` data. For regression
#' this means a numeric vector, and, e.g., for a multiclass classification problem, this migh instead be probabilities
#' which are returned as a numeric matrix. This argument can return vectors of arbitrary length, however,
#' if their length is greater than one, they must by named, e.g., `fun = mean` or
#' `fun = function(x) c("mean" = mean(x), "variance" = var(x))`.
#' The default is the mean, unless `obj` is classification with `predict.type = "response"`
#' in which case the default is the proportion of observations predicted to be in each class.
#' @param bounds (`numeric(2)`)\cr
#' The value (lower, upper) the estimated standard error is multiplied by to estimate the bound on a
#' confidence region for a partial dependence. Ignored if `predict.type != "se"` for the learner.
#' Default is the 2.5 and 97.5 quantiles (-1.96, 1.96) of the Gaussian distribution.
#' @param uniform (`logical(1)`)\cr
#' Whether or not the prediction grid for the `features` is a uniform grid of size `n[1]` or sampled with
#' replacement from the `input`.
#' Default is `TRUE`.
#' @param n (`integer21`)\cr
#' The first element of `n` gives the size of the prediction grid created for each feature.
#' The second element of `n` gives the size of the sample to be drawn without replacement from the `input` data.
#' Setting `n[2]` less than the number of rows in the `input` will decrease computation time.
#' The default for `n[1]` is 10, and the default for `n[2]` is the number of rows in the `input`.
#' @param ... additional arguments to be passed to `mmpf`'s `marginalPrediction`.
#' @return [PartialDependenceData]. A named list, which contains the partial dependence,
#' input data, target, features, task description, and other arguments controlling the type of
#' partial dependences made.
#'
#' Object members:
#' \item{data}{[data.frame]\cr
#' Has columns for the prediction: one column for regression and
#' survival analysis, and a column for class and the predicted probability for classification as well
#' as a a column for each element of `features`. If `individual = TRUE` then there is an
#' additional column `idx` which gives the index of the `data` that each prediction corresponds to.}
#' \item{task.desc}{[TaskDesc]\cr
#' Task description.}
#' \item{target}{Target feature for regression, target feature levels for classification,
#' survival and event indicator for survival.}
#' \item{features}{[character]\cr
#' Features argument input.}
#' \item{interaction}{(`logical(1)`)\cr
#' Whether or not the features were interacted (i.e. conditioning).}
#' \item{derivative}{(`logical(1)`)\cr
#' Whether or not the partial derivative was estimated.}
#' \item{individual}{(`logical(1)`)\cr
#' Whether the partial dependences were aggregated or the individual curves are retained.}
#' @references
#' Goldstein, Alex, Adam Kapelner, Justin Bleich, and Emil Pitkin. \dQuote{Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation.} Journal of Computational and Graphical Statistics. Vol. 24, No. 1 (2015): 44-65.
#'
#' Friedman, Jerome. \dQuote{Greedy Function Approximation: A Gradient Boosting Machine.} The Annals of Statistics. Vol. 29. No. 5 (2001): 1189-1232.
#' @examples
#' \dontshow{ if (requireNamespace("rpart")) \{ }
#' \dontshow{ pname <- "mmpf" ; if (requireNamespace(pname)) \{ }
#' lrn = makeLearner("regr.svm")
#' fit = train(lrn, bh.task)
#' pd = generatePartialDependenceData(fit, bh.task, "lstat")
#' plotPartialDependence(pd, data = getTaskData(bh.task))
#'
#' lrn = makeLearner("classif.rpart", predict.type = "prob")
#' fit = train(lrn, iris.task)
#' pd = generatePartialDependenceData(fit, iris.task, "Petal.Width")
#' plotPartialDependence(pd, data = getTaskData(iris.task))
#' \dontshow{ \} }
#' \dontshow{ \} }
#' @export
generatePartialDependenceData = function(obj, input, features = NULL,
interaction = FALSE, derivative = FALSE, individual = FALSE,
fun = mean, bounds = c(qnorm(.025), qnorm(.975)),
uniform = TRUE, n = c(10, NA), ...) {
requirePackages("mmpf")
pname = "mmpf"
assertClass(obj, "WrappedModel")
if (obj$learner$predict.type == "se" & individual) {
stop("individual = TRUE not compatabile with predict.type = 'se'!")
}
if (obj$learner$predict.type == "se" & derivative) {
stop("derivative = TRUE is not compatible with predict.type = 'se'!")
}
if (!inherits(input, c("Task", "data.frame"))) {
stop("input must be a Task or a data.frame!")
}
if (inherits(input, "Task")) {
data = getTaskData(input)
td = input$task.desc
} else {
data = input
td = obj$task.desc
assertDataFrame(data, col.names = "unique", min.rows = 1L, min.cols = length(obj$features) + length(td$target))
assertSetEqual(colnames(data), c(obj$features, td$target), ordered = FALSE)
}
if (is.na(n[2])) {
n[2] = nrow(data)
}
if (is.null(features)) {
features = colnames(data)[!colnames(data) %in% td$target]
} else {
assertSubset(features, obj$features)
}
assertFlag(interaction)
assertFlag(derivative)
if (derivative & interaction) {
stop("interaction cannot be TRUE if derivative is TRUE.")
}
if (derivative) {
if (any(sapply(data[, features, drop = FALSE], class) %in% c("factor", "ordered", "character"))) {
stop("All features must be numeric to estimate set derivative = TRUE!")
}
}
se = Function = Class = patterns = NULL # nolint
assertFlag(individual)
if (individual) {
fun = identity
}
assertFunction(fun)
test.fun = fun(1:3)
if (length(test.fun) == 1L) {
multi.fun = FALSE
} else {
multi.fun = TRUE
if (is.null(names(test.fun)) & !individual) {
stop("If fun returns a vector it must be named.")
}
}
assertNumeric(bounds, len = 2L)
assertNumber(bounds[1], upper = 0)
assertNumber(bounds[2], lower = 0)
assertFlag(uniform)
assertCount(n[1], positive = TRUE)
assertCount(n[2], positive = TRUE)
if (n[2] > nrow(data)) {
stop("The number of points taken from the training data cannot exceed the number of training data points.")
}
if (td$type == "regr") {
target = td$target
} else if (td$type == "classif") {
if (length(td$class.levels) > 2L) {
target = td$class.levels
} else {
target = td$positive
}
} else {
target = "Risk"
}
if (!derivative) {
args = list(model = obj, data = data, uniform = uniform, aggregate.fun = fun,
predict.fun = getPrediction, n = n, ...)
out = parallelMap(asNamespace(pname)$marginalPrediction,
vars = if (interaction) list(features) else as.list(features), more.args = args)
if (length(target) == 1L) {
out = lapply(out, function(x) {
feature = features[features %in% names(x)]
names(x) = stri_replace_all(names(x), target, regex = "^preds")
x = data.table(x)
if (individual) {
x = melt(x, id.vars = feature, variable.name = "n", value.name = target)
x[, n := stri_replace(n, "", regex = target)]
setnames(x, c(feature, if (individual) "n" else "Function", target), names(x))
} else {
x
}
})
}
} else {
points = lapply(features, function(x) asNamespace(pname)$uniformGrid(data[[x]], n[1]))
names(points) = features
args = list(obj = obj, data = data, uniform = uniform, fun = fun,
n = n, points = points, target = target, individual = individual, ...)
if (individual) {
int.points = sample(seq_len(nrow(data)), n[2])
out = parallelMap(doDerivativeMarginalPrediction, x = features,
z = int.points, more.args = args)
} else {
out = parallelMap(doDerivativeMarginalPrediction, x = features, more.args = args)
}
}
out = rbindlist(out, fill = TRUE, use.names = TRUE)
if (length(target) == 1L) {
if (!multi.fun) {
setcolorder(out, c(names(out)[grepl(paste(target, "preds", sep = "|"),
names(out))], if (obj$learner$predict.type == "se") "se" else NULL, features))
setnames(out, names(out), c(target, if (obj$learner$predict.type == "se") "se" else NULL, features))
} else if (individual) {
setcolorder(out, c(target, "n", features))
} else {
setnames(out, names(out), stri_replace_all_fixed(names(out), "preds", ""))
out = melt(as.data.table(out), id.vars = features, variable.name = "Function",
value.name = target)
setcolorder(out, c(target, "Function", features))
}
} else {
if (!multi.fun) {
out = melt(as.data.table(out), measure.vars = target,
variable.name = if (td$type == "classif") "Class" else "Function",
value.name = if (td$type == "classif") "Probability" else "Prediction")
if (td$type == "classif") {
out[, Class := stri_replace_all_regex(Class, "^prob\\.", "")]
setcolorder(out, c("Class",
if (td$type == "classif") "Probability" else "Prediction", features))
} else {
out[, Function := stri_replace_all_regex(target, "^preds\\.", "")]
setcolorder(out, c("Function",
if (td$type == "classif") "Probability" else "Prediction", features))
}
} else if (individual) {
if (!derivative) {
out = melt(as.data.table(out), measure = patterns(target), variable.name = "n",
value.name = target)
}
out = melt(as.data.table(out), measure.vars = target,
variable.name = if (td$type == "classif") "Class" else "Target",
value.name = if (td$type == "classif") "Probability" else "Prediction")
setcolorder(out, c(if (td$type == "classif") "Class" else "Target",
if (td$type == "classif") "Probability" else "Prediction", "n", features))
} else {
out = melt(as.data.table(out), id.vars = c(features, if (individual) "n"),
variable.name = if (td$type == "classif") "Class" else "Function",
value.name = if (td$type == "classif") "Probability" else "Prediction")
if (td$type == "classif") {
x = stri_split_regex(out$Class, "\\.", n = 2, simplify = TRUE)
## checking to see if there is detritus, e.g., preds.class or something
id = apply(x, 2, function(z) length(unique(z)) > 1L)
if (!all(id)) {
out[, "Class"] = x[, id]
setcolorder(out, c("Class", "Probability", features))
} else {
out[, c("Class", "Function") := lapply(1:2, function(i) x[, i])]
out[, Function := stri_replace_all_regex(Function, "^preds\\.", "")]
setcolorder(out, c("Class", "Function", "Probability", features))
}
} else {
out[, Function := stri_replace_all_regex(Function, "^preds\\.", "")]
setcolorder(out, c("Class", "Function", "Prediction", features))
}
}
}
# for se, compute upper and lower bounds
if (obj$learner$predict.type == "se") {
x = outer(out$se, bounds) + out[[target]]
out[, c("lower", "upper") := lapply(1:2, function(i) x[, i])]
out[, se := NULL]
target = c("lower", target, "upper")
setcolorder(out, c(target, features))
}
colnames(out) = make.names(colnames(out))
features = make.names(features)
target = make.names(features)
makeS3Obj("PartialDependenceData",
data = out,
task.desc = td,
target = target,
features = features,
derivative = derivative,
interaction = interaction,
individual = individual)
}
## second layer wrapper for numDeriv grad and jacobian use with marginal prediction
doDerivativeMarginalPrediction = function(x, z = sample(seq_len(nrow(data)), n[2]),
target, points, obj, data, uniform, fun, n, individual, ...) {
requirePackages("numDeriv", why = "PartialDependenceData", default.method = "load")
if (length(target) == 1L) {
ret = cbind(numDeriv::grad(numDerivWrapper,
x = points[[x]], model = obj, data = data,
uniform = uniform, aggregate.fun = fun, vars = x,
int.points = z,
predict.fun = getPrediction, n = n, target = target,
individual = individual, ...),
points[[x]], if (individual) z)
} else {
out = lapply(points[[x]], function(x.value) {
t(numDeriv::jacobian(numDerivWrapper, x = x.value, model = obj, data = data,
uniform = uniform, aggregate.fun = fun, vars = x, int.points = z,
predict.fun = getPrediction, n = n, target = target,
individual = individual, ...))
})
out = do.call("rbind", out)
ret = cbind(out, points[[x]], if (individual) z)
}
ret = as.data.table(ret)
setnames(ret, names(ret), c(target, x, if (individual) "n"))
ret
}
# grad and jacobian both need to take a vector along with ...
# and they return either a vector or a matrix
# so i need to pass the points as that x, and then extract the appropriate
# vector or matrix from marginalPrediction
numDerivWrapper = function(points, vars, individual, target, ...) {
args = list(...)
pname = "mmpf"
args$points = list(points)
names(args$points) = vars
args$vars = vars
out = do.call(asNamespace(pname)$marginalPrediction, args)
as.matrix(out[, which(names(out) != vars), with = FALSE])
}
#' @export
print.PartialDependenceData = function(x, ...) {
catf("PartialDependenceData")
catf("Task: %s", x$task.desc$id)
catf("Features: %s", stri_paste(x$features, collapse = ", ", sep = " "))
catf("Target: %s", stri_paste(x$target, collapse = ", ", sep = " "))
catf("Derivative: %s", x$derivative)
catf("Interaction: %s", x$interaction)
catf("Individual: %s", x$individual)
printHead(x$data, ...)
}
#' @title Plot a partial dependence with ggplot2.
#' @description
#' Plot a partial dependence from [generatePartialDependenceData] using ggplot2.
#'
#' @family partial_dependence
#' @family plot
#'
#' @param obj [PartialDependenceData]\cr
#' Generated by [generatePartialDependenceData].
#' @param geom (`charater(1)`)\cr
#' The type of geom to use to display the data. Can be \dQuote{line} or \dQuote{tile}.
#' For tiling at least two features must be used with `interaction = TRUE` in the call to
#' [generatePartialDependenceData]. This may be used in conjuction with the
#' `facet` argument if three features are specified in the call to
#' [generatePartialDependenceData].
#' Default is \dQuote{line}.
#' @param facet (`character(1)`)\cr
#' The name of a feature to be used for facetting.
#' This feature must have been an element of the `features` argument to
#' [generatePartialDependenceData] and is only applicable when said argument had length
#' greater than 1.
#' The feature must be a factor or an integer.
#' If [generatePartialDependenceData] is called with the `interaction` argument `FALSE`
#' (the default) with argument `features` of length greater than one, then `facet` is ignored and
#' each feature is plotted in its own facet.
#' Default is `NULL`.
#' @template arg_facet_nrow_ncol
#' @param p (`numeric(1)`)\cr
#' If `individual = TRUE` then `sample` allows the user to sample without replacement
#' from the output to make the display more readable. Each row is sampled with probability `p`.
#' Default is `1`.
#' @param data ([data.frame])\cr
#' Data points to plot. Usually the training data. For survival and binary classification tasks a rug plot
#' wherein ticks represent failures or instances of the positive class are shown. For regression tasks
#' points are shown. For multiclass classification tasks ticks are shown and colored according to their class.
#' Both the features and the target must be included.
#' Default is `NULL`.
#' @template ret_gg2
#' @export
plotPartialDependence = function(obj, geom = "line", facet = NULL, facet.wrap.nrow = NULL,
facet.wrap.ncol = NULL, p = 1, data = NULL) {
assertClass(obj, "PartialDependenceData")
assertChoice(geom, c("tile", "line"))
if (obj$interaction & length(obj$features) > 2L & geom != "tile") {
stop("Cannot plot more than 2 features together with line plots.")
}
if (geom == "tile") {
if (!obj$interaction) {
stop("obj argument created by generatePartialDependenceData was called with interaction = FALSE!")
}
}
if (!is.null(data)) {
assertDataFrame(data, col.names = "unique", min.rows = 1L,
min.cols = length(obj$features) + length(obj$td$target))
assertSubset(obj$features, colnames(data), empty.ok = FALSE)
}
if (!is.null(facet)) {
assertChoice(facet, obj$features)
if (!length(obj$features) %in% 2:3) {
stop("obj argument created by generatePartialDependenceData must be called with two or three features to use this argument!")
}
if (!obj$interaction) {
stop("obj argument created by generatePartialDependenceData must be called with interaction = TRUE to use this argument!")
}
features = obj$features[which(obj$features != facet)]
if (is.factor(obj$data[[facet]])) {
obj$data[[facet]] = stri_paste(facet, "=", obj$data[[facet]], sep = " ")
} else if (is.character(obj$data[[facet]])) {
obj$data[[facet]] = stri_paste(facet, "=", as.factor(obj$data[[facet]]), sep = " ")
} else if (is.numeric(obj$data[[facet]])) {
obj$data[[facet]] = stri_paste(facet, "=", as.factor(signif(obj$data[[facet]], 3L)), sep = " ")
} else {
stop("Invalid input to facet arg. Must refer to a numeric/integer, character, or facet feature.")
}
scales = "fixed"
} else {
features = obj$features
if (length(features) > 1L & !(length(features) == 2L & geom == "tile")) {
facet = "Feature"
scales = "free_x"
} else {
scales = "fixed"
}
}
# detect if there was a multi-output function used in which case
# there should be a column named function which needs to be facetted
if ("Function" %in% colnames(obj$data)) {
facet = c(facet, "Function")
}
# sample from individual partial dependence estimates
if (p != 1) {
assertNumber(p, lower = 0, upper = 1, finite = TRUE)
if (!obj$individual) {
stop("obj argument created by generatePartialDependenceData must be called with individual = TRUE to use this argument!")
}
rows = unique(obj$data$idx)
id = sample(rows, size = floor(p * length(rows)))
obj$data = obj$data[which(obj$data$idx %in% id), ]
}
if (obj$task.desc$type %in% c("regr", "classif")) {
if (obj$task.desc$type == "classif" && length(obj$task.desc$class.levels) <= 2L) {
target = obj$task.desc$positive
} else {
target = obj$task.desc$target
}
} else {
target = "Risk"
}
# are there bounds compatible with a ribbon plot?
bounds = all(c("lower", "upper") %in% colnames(obj$data) & obj$task.desc$type %in% c("surv", "regr") &
length(features) < 3L & geom == "line")
if (geom == "line") {
# find factors and cast them to numerics so that we can melt
idx = which(sapply(obj$data, class) == "factor" & colnames(obj$data) %in% features)
# explicit casting previously done implicitly by reshape2::melt.data.frame
for (id in idx) obj$data[, id] = as.numeric(obj$data[[id]])
# melt the features but leave everything else alone
obj$data = setDF(melt(data.table(obj$data),
id.vars = colnames(obj$data)[!colnames(obj$data) %in% features],
variable = "Feature", value.name = "Value", na.rm = TRUE, variable.factor = TRUE))
# when individual is false plot variable value against the target
if (!obj$individual) {
# for regression/survival this is a simple line plot
if (obj$task.desc$type %in% c("regr", "surv") |
(obj$task.desc$type == "classif" & length(obj$task.desc$class.levels) <= 2L)) {
plt = ggplot(obj$data, aes_string("Value", target)) +
geom_line(color = ifelse(is.null(data), "black", "red")) + geom_point()
} else { # for classification create different colored lines
plt = ggplot(obj$data, aes_string("Value", "Probability", group = "Class", color = "Class")) +
geom_line() + geom_point()
}
} else { # if individual is true make the lines semi-transparent
if (obj$task.desc$type %in% c("regr", "surv") |
(obj$task.desc$type == "classif" & length(obj$task.desc$class.levels) <= 2L)) {
plt = ggplot(obj$data, aes_string("Value", target, group = "n")) +
geom_line(alpha = .25, color = ifelse(is.null(data), "black", "red")) + geom_point()
} else {
plt = ggplot(obj$data, aes_string("Value", "Probability", group = "idx", color = "Class")) +
geom_line(alpha = .25) + geom_point()
}
}
# if there is only one feature than melting was redundant (but cleaner code)
# so rename the x-axis using the feature name. rename target only if it was a vector
# since in this case the target name isn't passed through
if (length(features) == 1L) {
if (obj$task.desc$type %in% c("regr", "surv")) {
plt = plt + labs(x = features, y = target)
} else {
plt = plt + labs(x = features)
}
}
# ribbon bounds from se estimation
if (bounds) {
plt = plt + geom_ribbon(aes_string(ymin = "lower", ymax = "upper"), alpha = .5)
}
# labels added to for derivative plots
if (obj$derivative) {
plt = plt + ylab(stri_paste(target, "(derivative)", sep = " "))
}
} else { ## tiling
if (obj$task.desc$type == "classif") {
target = "Probability"
facet = "Class"
if ("Function" %in% obj$data) {
facet = c(facet, "Function")
}
scales = "free"
}
plt = ggplot(obj$data, aes_string(x = features[1], y = features[2], fill = target))
plt = plt + geom_raster(aes_string(fill = target))
# labels for ICE plots
if (obj$derivative) {
plt = plt + scale_fill_continuous(guide = guide_colorbar(title = stri_paste(target, "(derivative)", sep = " ")))
}
}
# facetting which is either passed in by the user, the features column when interaction = FALSE and length(features) > 1
# and/or when fun outputs a vector (then facetting on the Function column)
if (!is.null(facet)) {
if (length(facet) == 1L) {
plt = plt + facet_wrap(as.formula(stri_paste("~", facet)), scales = scales,
nrow = facet.wrap.nrow, ncol = facet.wrap.ncol)
} else {
plt = plt + facet_wrap(as.formula(stri_paste(facet[2], "~", facet[1])), scales = scales,
nrow = facet.wrap.nrow, ncol = facet.wrap.ncol)
} # facet ordering is reversed deliberately to handle len = 1 case!
}
# data overplotting
if (!is.null(data)) {
data = data[, colnames(data) %in% c(obj$features, obj$task.desc$target)]
if (!is.null(facet)) {
feature.facet = facet[facet %in% obj$features]
fun.facet = facet[!facet %in% feature.facet]
if (length(fun.facet) > 0L && (fun.facet == "Feature" || !feature.facet %in% obj$features)) {
data = melt(as.data.table(data), id.vars = c(obj$task.desc$target, feature.facet),
variable = "Feature", value.name = "Value", na.rm = TRUE, variable.factor = TRUE)
}
if (length(feature.facet) > 0) {
if (!is.factor(data[[feature.facet]])) {
data[[feature.facet]] = stri_paste(feature.facet, "=", as.factor(signif(data[[feature.facet]], 2)), sep = " ")
} else {
data[[feature.facet]] = stri_paste(feature.facet, "=", data[[feature.facet]], sep = " ")
}
}
if (length(fun.facet) > 0L && "Function" %in% fun.facet) {
pname = "mmpf"
data = asNamespace(pname)$cartesianExpand(data, data.frame("Function" = unique(obj$data$Function)))
}
}
if (geom == "line") {
if (obj$task.desc$type %in% c("classif", "surv")) {
if (obj$task.desc$type == "classif") {
if (!is.na(obj$task.desc$positive)) {
plt = plt + geom_rug(aes_string(plt$labels$x, color = obj$task.desc$target),
data[data[[obj$task.desc$target]] == obj$task.desc$positive, ],
alpha = .25, inherit.aes = FALSE)
} else {
plt = plt + geom_rug(aes_string(plt$labels$x), data, alpha = .25, inherit.aes = FALSE)
}
} else {
plt = plt + geom_rug(aes_string(plt$labels$x),
data[data[[obj$task.desc$target[2]]], ],
alpha = .25, inherit.aes = FALSE)
}
} else {
plt = plt + geom_point(aes_string(plt$labels$x, obj$task.desc$target),
data, alpha = .25, inherit.aes = FALSE)
}
} else {
plt = plt + geom_point(aes_string(plt$labels$x, plt$labels$y), data, alpha = .25, inherit.aes = FALSE)
}
}
plt
}
|