1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
#' @title Generate threshold vs. performance(s) for 2-class classification.
#'
#' @description
#' Generates data on threshold vs. performance(s) for 2-class classification that can be used for plotting.
#'
#' @family generate_plot_data
#' @family thresh_vs_perf
#' @aliases ThreshVsPerfData
#'
#' @template arg_plotroc_obj
#' @template arg_measures
#' @param gridsize (`integer(1)`)\cr
#' Grid resolution for x-axis (threshold).
#' Default is 100.
#' @param aggregate (`logical(1)`)\cr
#' Whether to aggregate [ResamplePrediction]s or to plot the performance
#' of each iteration separately.
#' Default is `TRUE`.
#' @param task.id (`character(1)`)\cr
#' Selected task in [BenchmarkResult] to do plots for, ignored otherwise.
#' Default is first task.
#' @return ([ThreshVsPerfData]). A named list containing the measured performance
#' across the threshold grid, the measures, and whether the performance estimates were
#' aggregated (only applicable for (list of) [ResampleResult]s).
#' @export
generateThreshVsPerfData = function(obj, measures, gridsize = 100L, aggregate = TRUE, task.id = NULL) {
UseMethod("generateThreshVsPerfData")
}
#' @export
generateThreshVsPerfData.Prediction = function(obj, measures, gridsize = 100L, aggregate = TRUE,
task.id = NULL) {
checkPrediction(obj, task.type = "classif", binary = TRUE, predict.type = "prob")
generateThreshVsPerfData.list(namedList("prediction", obj), measures, gridsize, aggregate, task.id)
}
#' @export
generateThreshVsPerfData.ResampleResult = function(obj, measures, gridsize = 100L, aggregate = TRUE,
task.id = NULL) {
obj = getRRPredictions(obj)
checkPrediction(obj, task.type = "classif", binary = TRUE, predict.type = "prob")
generateThreshVsPerfData.Prediction(obj, measures, gridsize, aggregate)
}
#' @export
generateThreshVsPerfData.BenchmarkResult = function(obj, measures, gridsize = 100L, aggregate = TRUE,
task.id = NULL) {
tids = getBMRTaskIds(obj)
if (is.null(task.id)) {
task.id = tids[1L]
} else {
assertChoice(task.id, tids)
}
obj = getBMRPredictions(obj, task.ids = task.id, as.df = FALSE)[[1L]]
for (x in obj) {
checkPrediction(x, task.type = "classif", binary = TRUE, predict.type = "prob")
}
generateThreshVsPerfData.list(obj, measures, gridsize, aggregate, task.id)
}
#' @export
generateThreshVsPerfData.list = function(obj, measures, gridsize = 100L, aggregate = TRUE, task.id = NULL) {
assertList(obj, c("Prediction", "ResampleResult"), min.len = 1L)
## unwrap ResampleResult to Prediction and set default names
if (inherits(obj[[1L]], "ResampleResult")) {
if (is.null(names(obj))) {
names(obj) = extractSubList(obj, "learner.id")
}
obj = extractSubList(obj, "pred", simplify = FALSE)
}
assertList(obj, names = "unique")
td = extractSubList(obj, "task.desc", simplify = FALSE)[[1L]]
measures = checkMeasures(measures, td)
mids = replaceDupeMeasureNames(measures, "id")
names(measures) = mids
grid = data.frame(threshold = seq(0, 1, length.out = gridsize))
resamp = all(vlapply(obj, function(x) inherits(x, "ResamplePrediction")))
out = lapply(obj, function(x) {
do.call("rbind", lapply(grid$threshold, function(th) {
pp = setThreshold(x, threshold = th)
if (!aggregate && resamp) {
iter = seq_len(pp$instance$desc$iters)
asMatrixRows(lapply(iter, function(i) {
pp$data = pp$data[pp$data$iter == i, ]
c(setNames(performance(pp, measures = measures), mids), "iter" = i, "threshold" = th)
}))
} else {
c(setNames(performance(pp, measures = measures), mids), "threshold" = th)
}
}))
})
if (length(obj) == 1L && inherits(obj[[1L]], "Prediction")) {
out = out[[1L]]
colnames(out)[!colnames(out) %in% c("iter", "threshold", "learner")] = mids
} else {
out = setDF(rbindlist(lapply(out, as.data.table), fill = TRUE, idcol = "learner", use.names = TRUE))
colnames(out)[!colnames(out) %in% c("iter", "threshold", "learner")] = mids
}
makeS3Obj("ThreshVsPerfData",
measures = measures,
data = as.data.frame(out),
aggregate = aggregate)
}
#' @title Plot threshold vs. performance(s) for 2-class classification using ggplot2.
#'
#' @description
#' Plots threshold vs. performance(s) data that has been generated with [generateThreshVsPerfData].
#'
#' @family plot
#' @family thresh_vs_perf
#'
#' @param obj ([ThreshVsPerfData])\cr
#' Result of [generateThreshVsPerfData].
#' @param measures ([Measure] | list of [Measure])\cr
#' Performance measure(s) to plot.
#' Must be a subset of those used in [generateThreshVsPerfData].
#' Default is all the measures stored in `obj` generated by
#' [generateThreshVsPerfData].
#' @param facet (`character(1)`)\cr
#' Selects \dQuote{measure} or \dQuote{learner} to be the facetting variable.
#' The variable mapped to `facet` must have more than one unique value, otherwise it will
#' be ignored. The variable not chosen is mapped to color if it has more than one unique value.
#' The default is \dQuote{measure}.
#' @param mark.th (`numeric(1)`)\cr
#' Mark given threshold with vertical line?
#' Default is `NA` which means not to do it.
#' @param pretty.names (`logical(1)`)\cr
#' Whether to use the [Measure] name instead of the id in the plot.
#' Default is `TRUE`.
#' @template arg_facet_nrow_ncol
#' @template ret_gg2
#' @export
#' @examples
#' \dontshow{ if (requireNamespace("rpart")) \{ }
#' lrn = makeLearner("classif.rpart", predict.type = "prob")
#' mod = train(lrn, sonar.task)
#' pred = predict(mod, sonar.task)
#' pvs = generateThreshVsPerfData(pred, list(acc, setAggregation(acc, train.mean)))
#' plotThreshVsPerf(pvs)
#' \dontshow{ \} }
plotThreshVsPerf = function(obj, measures = obj$measures,
facet = "measure", mark.th = NA_real_,
pretty.names = TRUE, facet.wrap.nrow = NULL, facet.wrap.ncol = NULL) {
assertClass(obj, classes = "ThreshVsPerfData")
mappings = c("measure", "learner")
assertChoice(facet, mappings)
color = mappings[mappings != facet]
measures = checkMeasures(measures, obj)
checkSubset(extractSubList(measures, "id"), extractSubList(obj$measures, "id"))
mids = replaceDupeMeasureNames(measures, "id")
names(measures) = mids
id.vars = "threshold"
resamp = "iter" %in% colnames(obj$data)
if (resamp) id.vars = c(id.vars, "iter")
if ("learner" %in% colnames(obj$data)) id.vars = c(id.vars, "learner")
obj$data = obj$data[, c(id.vars, names(measures))]
if (pretty.names) {
mnames = replaceDupeMeasureNames(measures, "name")
colnames(obj$data) = mapValues(colnames(obj$data), names(measures), mnames)
} else {
mnames = names(measures)
}
data = setDF(melt(as.data.table(obj$data), measure.vars = mnames, variable.name = "measure", value.name = "performance", id.vars = id.vars))
if (!is.null(data$learner)) {
nlearn = length(unique(data$learner))
} else {
nlearn = 1L
}
nmeas = length(unique(data$measure))
if ((color == "learner" && nlearn == 1L) || (color == "measure" && nmeas == 1L)) {
color = NULL
}
if ((facet == "learner" && nlearn == 1L) || (facet == "measure" && nmeas == 1L)) {
facet = NULL
}
if (resamp && !obj$aggregate && is.null(color)) {
group = "iter"
} else if (resamp && !obj$aggregate && !is.null(color)) {
data$int = interaction(data[["iter"]], data[[color]])
group = "int"
} else {
group = NULL
}
plt = ggplot(data, aes_string(x = "threshold", y = "performance"))
plt = plt + geom_line(aes_string(group = group, color = color))
if (!is.na(mark.th)) {
plt = plt + geom_vline(xintercept = mark.th)
}
if (!is.null(facet)) {
plt = plt + facet_wrap(facet, scales = "free_y", nrow = facet.wrap.nrow,
ncol = facet.wrap.ncol)
}
else if (length(obj$measures) == 1L) {
plt = plt + ylab(obj$measures[[1]]$name)
} else {
plt = plt + ylab("performance")
}
return(plt)
}
#' @title Plots a ROC curve using ggplot2.
#'
#' @description
#' Plots a ROC curve from predictions.
#'
#' @family plot
#' @family thresh_vs_perf
#'
#' @param obj ([ThreshVsPerfData])\cr
#' Result of [generateThreshVsPerfData].
#' @param measures ([list(2)` of [Measure])\cr
#' Default is the first 2 measures passed to [generateThreshVsPerfData].
#' @param diagonal (`logical(1)`)\cr
#' Whether to plot a dashed diagonal line.
#' Default is `TRUE`.
#' @param pretty.names (`logical(1)`)\cr
#' Whether to use the [Measure] name instead of the id in the plot.
#' Default is `TRUE`.
#' @param facet.learner (`logical(1)`)\cr
#' Weather to use facetting or different colors to compare multiple learners.
#' Default is `FALSE`.
#' @template ret_gg2
#' @export
#' @examples
#' \dontshow{ if (requireNamespace("rpart")) \{ }
#' \donttest{
#' lrn = makeLearner("classif.rpart", predict.type = "prob")
#' fit = train(lrn, sonar.task)
#' pred = predict(fit, task = sonar.task)
#' roc = generateThreshVsPerfData(pred, list(fpr, tpr))
#' plotROCCurves(roc)
#'
#' r = bootstrapB632plus(lrn, sonar.task, iters = 3)
#' roc_r = generateThreshVsPerfData(r, list(fpr, tpr), aggregate = FALSE)
#' plotROCCurves(roc_r)
#'
#' r2 = crossval(lrn, sonar.task, iters = 3)
#' roc_l = generateThreshVsPerfData(list(boot = r, cv = r2), list(fpr, tpr), aggregate = FALSE)
#' plotROCCurves(roc_l)
#' }
#' \dontshow{ \} }
plotROCCurves = function(obj, measures, diagonal = TRUE, pretty.names = TRUE, facet.learner = FALSE) {
assertClass(obj, "ThreshVsPerfData")
if (missing(measures)) {
measures = obj$measures[1:2]
}
assertList(measures, "Measure", len = 2)
assertFlag(diagonal)
assertFlag(pretty.names)
assertFlag(facet.learner)
if (is.null(names(measures))) {
names(measures) = extractSubList(measures, "id")
}
if (pretty.names) {
mnames = replaceDupeMeasureNames(measures, "name")
} else {
mnames = names(measures)
}
if (!is.null(obj$data$learner)) {
mlearn = length(unique(obj$data$learner)) > 1L
} else {
mlearn = FALSE
}
resamp = "iter" %in% colnames(obj$data)
aes = list(x = names(measures)[1], y = names(measures)[2])
if (!obj$aggregate && mlearn && resamp) {
obj$data$int = interaction(obj$data$learner, obj$data$iter)
aes$group = "int"
} else if (!obj$aggregate && !mlearn && resamp) {
aes$group = "iter"
} else if (obj$aggregate && mlearn && !resamp) {
aes$group = "learner"
} else {
obj$data = obj$data[order(obj$data$threshold), ]
}
if (mlearn && !facet.learner) {
aes$color = "learner"
}
p = ggplot(obj$data, do.call(aes_string, aes)) + geom_path() + labs(x = mnames[1], y = mnames[2])
if (mlearn && facet.learner) {
p = p + facet_wrap(~learner)
}
if (diagonal && all(vlapply(obj$data[, names(measures)], function(x) max(x, na.rm = TRUE) <= 1))) {
p = p + geom_abline(aes(intercept = 0, slope = 1), linetype = "dashed", alpha = .5)
}
p
}
|