1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
requireLearnerPackages = function(learner) {
requirePackages(learner$package, why = stri_paste("learner", learner$id, sep = " "), default.method = "load")
}
cleanupPackageNames = function(pkgs) {
stri_replace_all(pkgs, "", regex = "^[!_]")
}
# paste together measure and aggregation ids
measureAggrName = function(measure) {
stri_paste(measure$id, measure$aggr$id, sep = ".")
}
# paste together measure and aggregation names
measureAggrPrettyName = function(measure) {
stri_paste(measure$name, measure$aggr$name, sep = ": ")
}
# convert a named numvec of perf values (think 'aggr' from resample) into flat string
# ala <name><sep><value>,...,<name><sep><value>
perfsToString = function(y, sep = "=", digits = options()$digits) {
stri_paste(stri_paste(names(y), "=", formatC(y, digits = digits,
flag = "0", format = "f"), sep = ""), collapse = ",", sep = " ")
}
# Used for the resample output logging lines:
# Formats and joins the string 'prefix' and the vector 'y' to obtain an aligned output line
# If y is numeric we trim to desired digit with
# if not it's a character and we only need to take care that the col has desired width
# Example output (prefix = "[Resample] iter 1:"):
# [Resample] iter 1: 0.0000000 0.0370370 0.9629630
printResampleFormatLine = function(prefix, y, digits = options()$digits) {
# get desired width for each col (if measure ids are short --> digits)
# +3L to obtain spaces between cols
if (is.null(names(y))) {
names(y) = y
}
tab.width = max(stri_width(names(y)), digits) + 3L
# if we get perf vals format decimals and add trailing zeros where needed
if (is.numeric(y)) {
y = formatC(y, digits = digits, flag = "0", format = "f")
}
# Extend witdh of prefix and y. width = 22 is the ideal size for
# the prefix column. Change value here when iter.message was
# modified in resample.R
prefix = formatC(prefix, width = 22, flag = "-")
str = stri_flatten(formatC(y, width = tab.width, flag = "-"))
message(stri_paste(prefix, str, collapse = " "))
}
removeFromDots = function(ns, ...) {
args = list(...)
args[setdiff(names(args), ns)]
}
attachTrainingInfo = function(x, info) {
attr(x, "mlr.train.info") = info
x
}
getTrainingInfo = function(x) {
attr(x, "mlr.train.info") %??% attr(x$learner.model, "mlr.train.info")
}
getLearnerOptions = function(lrn, opts) {
lrn.opts = getLeafLearner(lrn)$config
setNames(lapply(opts, function(x) lrn.opts[[x]] %??% getMlrOption(x)), opts)
}
# p = probabilites for levs[2] => matrix with probs for levs[1] and levs[2]
propVectorToMatrix = function(p, levs) {
assertNumeric(p)
y = matrix(0, ncol = 2L, nrow = length(p))
colnames(y) = levs
y[, 2L] = p
y[, 1L] = 1 - p
y
}
#' @title List the supported task types in mlr
#'
#' @description
#' Returns a character vector with each of the supported task types in mlr.
#'
#' @return ([character]).
#' @export
listTaskTypes = function() {
c("classif", "regr", "surv", "costsens", "cluster", "multilabel")
}
# Maybe move to BBmisc at some point
measureTime = function(expr, ee = parent.frame()) {
before = proc.time()[[3L]]
force(expr)
proc.time()[[3L]] - before
}
# find duplicate measure names or ids and paste together those
# with the associated aggregation ids or names
replaceDupeMeasureNames = function(measures, x = "id") {
assertList(measures, "Measure")
assertChoice(x, c("id", "name"))
meas.names = extractSubList(measures, x)
dupes = table(meas.names)
dupes = which(meas.names %in% names(dupes[dupes > 1]))
if (x == "id") {
new.names = sapply(measures[dupes], function(x) measureAggrName(x))
} else {
new.names = sapply(measures[dupes], function(x) measureAggrPrettyName(x))
}
meas.names[dupes] = new.names
unlist(meas.names)
}
# suppresses a warning iff the warning message contains the
# substring `str`.
suppressWarning = function(expr, str) {
withCallingHandlers(expr, warning = function(w) {
if (stri_detect_fixed(stri_flatten(w$message), str)) {
invokeRestart("muffleWarning")
}
})
}
hasEmptyLevels = function(x) {
!all(levels(x) %chin% as.character(unique(x)))
}
# thin a vector
thin = function(x, skip = 0) {
n = length(x)
x[seq(1, n, by = skip)]
}
# scale window if < 1
scaleWindows = function(window, scaler) {
if (window < 1) {
scaled.window = round(window * scaler)
} else {
scaled.window = round(window)
}
return(scaled.window)
}
# Create the resampling windows for growing and fixed window cross validation
makeResamplingWindow = function(desc, size, task = NULL, coords, window.type) {
initial.window.abs = scaleWindows(desc$initial.window, size)
horizon.window = scaleWindows(desc$horizon, initial.window.abs)
if (size - initial.window.abs < horizon.window) {
stop(catf("The initial window is %i observations while the data is %i observations. \n There is not enough data left (%i observations) to create a test set for a %i size horizon.",
initial.window.abs, size, initial.window.abs - size, horizon.window))
}
if (window.type == "FixedWindowCV") {
stops = (seq(size))[initial.window.abs:(size - horizon.window)]
starts = stops - initial.window.abs + 1
train.inds = mapply(seq, starts, stops, SIMPLIFY = FALSE)
test.inds = mapply(seq, stops + 1, stops + horizon.window, SIMPLIFY = FALSE)
} else if (window.type == "GrowingWindowCV") {
stops = (seq(from = 1, to = size))[initial.window.abs:(size - horizon.window)]
starts = rep(1, length(stops))
train.inds = mapply(seq, starts, stops, SIMPLIFY = FALSE)
test.inds = mapply(seq, stops + 1, stops + horizon.window, SIMPLIFY = FALSE)
}
skip = scaleWindows(desc$skip, length(train.inds))
if (skip > 0) {
train.inds = thin(train.inds, skip = skip)
test.inds = thin(test.inds, skip = skip)
}
if (length(test.inds) == 0) {
stop("Skip is too large and has removed all resampling instances. Please lower the value of skip.")
}
if (test.inds[[length(test.inds)]][horizon.window] != size) {
num.excluded = size - test.inds[[length(test.inds)]][horizon.window]
warning(paste0("The last ", num.excluded, " observation(s) were excluded. To include these observations please change either the initial.window or horizon."))
}
desc$iters = length(test.inds)
makeResampleInstanceInternal(desc, size, train.inds = train.inds, test.inds = test.inds)
}
# taken from mlr3learners
swap_levels = function(x) {
factor(x, levels = rev(levels(x)))
}
|