File: resample_convenience.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (86 lines) | stat: -rw-r--r-- 4,576 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# all argumemts below are checked by called functions

#' @rdname resample
#' @export
crossval = function(learner, task, iters = 10L, stratify = FALSE, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner)
  learner = setHyperPars(learner, ...)
  rdesc = makeResampleDesc("CV", iters = iters, stratify = stratify)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
repcv = function(learner, task, folds = 10L, reps = 10L, stratify = FALSE, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner)
  learner = setHyperPars(learner, ...)
  rdesc = makeResampleDesc("RepCV", folds = folds, reps = reps, stratify = stratify)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
holdout = function(learner, task, split = 2 / 3, stratify = FALSE, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner)
  learner = setHyperPars(learner, ...)
  rdesc = makeResampleDesc("Holdout", split = split, stratify = stratify)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
subsample = function(learner, task, iters = 30, split = 2 / 3, stratify = FALSE, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner)
  learner = setHyperPars(learner, ...)
  rdesc = makeResampleDesc("Subsample", iters = iters, split = split, stratify = stratify)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
bootstrapOOB = function(learner, task, iters = 30, stratify = FALSE, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner)
  learner = setHyperPars(learner, ...)
  rdesc = makeResampleDesc("Bootstrap", iters = iters, stratify = stratify)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
bootstrapB632 = function(learner, task, iters = 30, stratify = FALSE, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner)
  learner = setHyperPars(learner, ...)
  assertClass(task, classes = "Task")
  rdesc = makeResampleDesc("Bootstrap", predict = "both", iters = iters, stratify = stratify)
  measures = checkMeasures(measures, task, aggr = b632)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
bootstrapB632plus = function(learner, task, iters = 30, stratify = FALSE, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner)
  learner = setHyperPars(learner, ...)
  assertClass(task, classes = "Task")
  rdesc = makeResampleDesc("Bootstrap", predict = "both", iters = iters, stratify = stratify)
  measures = checkMeasures(measures, task, aggr = b632plus)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
growingcv = function(learner, task, horizon = 1, initial.window = .5, skip = 0, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner, ...)
  rdesc = makeResampleDesc("GrowingCV", horizon = horizon, initial.window = initial.window, skip = skip)
  measures = checkMeasures(measures, task, aggr = b632plus)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}

#' @rdname resample
#' @export
fixedcv = function(learner, task, horizon = 1L, initial.window = .5, skip = 0, measures, models = FALSE, keep.pred = TRUE, ..., show.info = getMlrOption("show.info")) {
  learner = checkLearner(learner, ...)
  rdesc = makeResampleDesc("FixedCV", horizon = horizon, initial.window = initial.window, skip = skip)
  measures = checkMeasures(measures, task, aggr = b632plus)
  resample(learner, task, rdesc, measures = measures, models = models, keep.pred = keep.pred, show.info = show.info)
}