File: zzz.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (42 lines) | stat: -rw-r--r-- 1,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#' @import methods
#' @importFrom survival Surv is.Surv
#' @importFrom graphics hist
#' @importFrom utils browseURL capture.output combn data getFromNamespace getS3method head tail methods
#' @import BBmisc
#' @import checkmate
#' @import parallelMap
#' @import ParamHelpers
#' @import ggplot2
#' @import stats
#' @import stringi
#' @import data.table
"_PACKAGE"

.onLoad = function(libname, pkgname) {
  configureMlr()
  backports::import(pkgname)
}

.onAttach = function(libname, pkgname) {
  configureMlr()
  parallelRegisterLevels(package = "mlr", levels = c("benchmark", "resample", "selectFeatures", "tuneParams", "ensemble"))

}

mlr = new.env(parent = emptyenv())

### Learner properties
mlr$learner.properties = list(
  classif = c("numerics", "factors", "ordered", "missings", "weights", "prob", "oneclass", "twoclass", "multiclass", "class.weights", "featimp", "oobpreds", "functionals", "single.functional"),
  multilabel = c("numerics", "factors", "ordered", "missings", "weights", "prob", "oneclass", "twoclass", "multiclass", "functionals", "single.functional"),
  regr = c("numerics", "factors", "ordered", "missings", "weights", "se", "featimp", "oobpreds",
    "functionals", "single.functional"),
  cluster = c("numerics", "factors", "ordered", "missings", "weights", "prob", "functionals",
    "single.functional"),
  surv = c("numerics", "factors", "ordered", "missings", "weights", "prob", "lcens", "rcens", "icens", "featimp", "oobpreds", "functionals", "single.functional"),
  costsens = c("numerics", "factors", "ordered", "missings", "weights", "prob", "twoclass", "multiclass", "functionals", "single.functional")
)
mlr$learner.properties$any = unique(unlist(mlr$learner.properties))

### Measure properties
mlr$measure.properties = c("classif", "classif.multi", "multilabel", "regr", "surv", "cluster", "costsens", "req.pred", "req.truth", "req.task", "req.feats", "req.model", "req.prob")