File: LearnerProperties.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (69 lines) | stat: -rw-r--r-- 2,670 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/Learner_properties.R
\name{LearnerProperties}
\alias{LearnerProperties}
\alias{getLearnerProperties}
\alias{hasLearnerProperties}
\title{Query properties of learners.}
\usage{
getLearnerProperties(learner)

hasLearnerProperties(learner, props)
}
\arguments{
\item{learner}{(\link{Learner} | \code{character(1)})\cr
The learner.
If you pass a string the learner will be created via \link{makeLearner}.}

\item{props}{(\link{character})\cr
Vector of properties to query.}
}
\value{
\code{getLearnerProperties} returns a character vector with learner properties.
\code{hasLearnerProperties} returns a logical vector of the same length as \code{props}.
}
\description{
Properties can be accessed with \code{getLearnerProperties(learner)}, which returns a
character vector.

The learner properties are defined as follows:
\describe{
\item{numerics, factors, ordered}{Can numeric, factor or ordered factor features be handled?}
\item{functionals}{Can an arbitrary number of functional features be handled?}
\item{single.functional}{Can exactly one functional feature be handled?}
\item{missings}{Can missing values in features be handled?}
\item{weights}{Can observations be weighted during fitting?}
\item{oneclas, twoclass, multiclass}{Only for classif: Can one-class, two-class or multi-class classification problems be handled?}
\item{class.weights}{Only for classif: Can class weights be handled?}
\item{rcens, lcens, icens}{Only for surv: Can right, left, or interval censored data be handled?}
\item{prob}{For classif, cluster, multilabel, surv: Can probabilites be predicted?}
\item{se}{Only for regr: Can standard errors be predicted?}
\item{oobpreds}{Only for classif, regr and surv: Can out of bag predictions be extracted from the trained model?}
\item{featimp}{For classif, regr, surv: Does the model support extracting information on feature importance?}
}
}
\seealso{
Other learner: 
\code{\link{getClassWeightParam}()},
\code{\link{getHyperPars}()},
\code{\link{getLearnerId}()},
\code{\link{getLearnerNote}()},
\code{\link{getLearnerPackages}()},
\code{\link{getLearnerParVals}()},
\code{\link{getLearnerParamSet}()},
\code{\link{getLearnerPredictType}()},
\code{\link{getLearnerShortName}()},
\code{\link{getLearnerType}()},
\code{\link{getParamSet}()},
\code{\link{helpLearner}()},
\code{\link{helpLearnerParam}()},
\code{\link{makeLearner}()},
\code{\link{makeLearners}()},
\code{\link{removeHyperPars}()},
\code{\link{setHyperPars}()},
\code{\link{setId}()},
\code{\link{setLearnerId}()},
\code{\link{setPredictThreshold}()},
\code{\link{setPredictType}()}
}
\concept{learner}