1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/RLearner.R
\name{RLearner}
\alias{RLearner}
\alias{RLearnerClassif}
\alias{RLearnerCluster}
\alias{RLearnerMultilabel}
\alias{RLearnerRegr}
\alias{RLearnerSurv}
\alias{makeRLearner}
\alias{makeRLearnerClassif}
\alias{makeRLearnerMultilabel}
\alias{makeRLearnerRegr}
\alias{makeRLearnerSurv}
\alias{makeRLearnerCluster}
\alias{makeRLearnerCostSens}
\title{Internal construction / wrapping of learner object.}
\usage{
makeRLearner()
makeRLearnerClassif(
cl,
package,
par.set,
par.vals = list(),
properties = character(0L),
name = cl,
short.name = cl,
note = "",
class.weights.param = NULL,
callees = character(0L)
)
makeRLearnerMultilabel(
cl,
package,
par.set,
par.vals = list(),
properties = character(0L),
name = cl,
short.name = cl,
note = "",
callees = character(0L)
)
makeRLearnerRegr(
cl,
package,
par.set,
par.vals = list(),
properties = character(0L),
name = cl,
short.name = cl,
note = "",
callees = character(0L)
)
makeRLearnerSurv(
cl,
package,
par.set,
par.vals = list(),
properties = character(0L),
name = cl,
short.name = cl,
note = "",
callees = character(0L)
)
makeRLearnerCluster(
cl,
package,
par.set,
par.vals = list(),
properties = character(0L),
name = cl,
short.name = cl,
note = "",
callees = character(0L)
)
makeRLearnerCostSens(
cl,
package,
par.set,
par.vals = list(),
properties = character(0L),
name = cl,
short.name = cl,
note = "",
callees = character(0L)
)
}
\arguments{
\item{cl}{(\code{character(1)})\cr
Class of learner. By convention, all classification learners
start with \dQuote{classif.} all regression learners with
\dQuote{regr.} all survival learners start with \dQuote{surv.}
all clustering learners with \dQuote{cluster.} and all multilabel
classification learners start with \dQuote{multilabel.}.
A list of all integrated learners is available on the
\link{learners} help page.}
\item{package}{(\link{character})\cr
Package(s) to load for the implementation of the learner.}
\item{par.set}{(\link[ParamHelpers:makeParamSet]{ParamHelpers::ParamSet})\cr
Parameter set of (hyper)parameters and their constraints.
Dependent parameters with a \code{requires} field must use \code{quote} and not
\code{expression} to define it.}
\item{par.vals}{(\link{list})\cr
Always set hyperparameters to these values when the object is constructed.
Useful when default values are missing in the underlying function.
The values can later be overwritten when the user sets hyperparameters.
Default is empty list.}
\item{properties}{(\link{character})\cr
Set of learner properties. See above.
Default is \code{character(0)}.}
\item{name}{(\code{character(1)})\cr
Meaningful name for learner.
Default is \code{id}.}
\item{short.name}{(\code{character(1)})\cr
Short name for learner.
Should only be a few characters so it can be used in plots and tables.
Default is \code{id}.}
\item{note}{(\code{character(1)})\cr
Additional notes regarding the learner and its integration in mlr.
Default is \dQuote{}.}
\item{class.weights.param}{(\code{character(1)})\cr
Name of the parameter, which can be used for providing class weights.}
\item{callees}{(\link{character})\cr
Character vector naming all functions of the learner's package being called which
have a relevant R help page.
Default is \code{character(0)}.}
}
\value{
(\link{RLearner}). The specific subclass is one of \link{RLearnerClassif},
\link{RLearnerCluster}, \link{RLearnerMultilabel},
\link{RLearnerRegr}, \link{RLearnerSurv}.
}
\description{
Wraps an already implemented learning method from R to make it accessible to mlr.
Call this method in your constructor. You have to pass an id (name), the required
package(s), a description object for all changeable parameters (you do not have to do this for the
learner to work, but it is strongly recommended), and use property tags to define
features of the learner.
For a general overview on how to integrate a learning algorithm into mlr's system, please read the
section in the online tutorial:
\url{https://mlr.mlr-org.com/articles/tutorial/create_learner.html}
To see all possible properties of a learner, go to: \link{LearnerProperties}.
}
|