File: RLearner.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (160 lines) | stat: -rw-r--r-- 4,278 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/RLearner.R
\name{RLearner}
\alias{RLearner}
\alias{RLearnerClassif}
\alias{RLearnerCluster}
\alias{RLearnerMultilabel}
\alias{RLearnerRegr}
\alias{RLearnerSurv}
\alias{makeRLearner}
\alias{makeRLearnerClassif}
\alias{makeRLearnerMultilabel}
\alias{makeRLearnerRegr}
\alias{makeRLearnerSurv}
\alias{makeRLearnerCluster}
\alias{makeRLearnerCostSens}
\title{Internal construction / wrapping of learner object.}
\usage{
makeRLearner()

makeRLearnerClassif(
  cl,
  package,
  par.set,
  par.vals = list(),
  properties = character(0L),
  name = cl,
  short.name = cl,
  note = "",
  class.weights.param = NULL,
  callees = character(0L)
)

makeRLearnerMultilabel(
  cl,
  package,
  par.set,
  par.vals = list(),
  properties = character(0L),
  name = cl,
  short.name = cl,
  note = "",
  callees = character(0L)
)

makeRLearnerRegr(
  cl,
  package,
  par.set,
  par.vals = list(),
  properties = character(0L),
  name = cl,
  short.name = cl,
  note = "",
  callees = character(0L)
)

makeRLearnerSurv(
  cl,
  package,
  par.set,
  par.vals = list(),
  properties = character(0L),
  name = cl,
  short.name = cl,
  note = "",
  callees = character(0L)
)

makeRLearnerCluster(
  cl,
  package,
  par.set,
  par.vals = list(),
  properties = character(0L),
  name = cl,
  short.name = cl,
  note = "",
  callees = character(0L)
)

makeRLearnerCostSens(
  cl,
  package,
  par.set,
  par.vals = list(),
  properties = character(0L),
  name = cl,
  short.name = cl,
  note = "",
  callees = character(0L)
)
}
\arguments{
\item{cl}{(\code{character(1)})\cr
Class of learner. By convention, all classification learners
start with \dQuote{classif.} all regression learners with
\dQuote{regr.} all survival learners start with \dQuote{surv.}
all clustering learners with \dQuote{cluster.} and all multilabel
classification learners start with \dQuote{multilabel.}.
A list of all integrated learners is available on the
\link{learners} help page.}

\item{package}{(\link{character})\cr
Package(s) to load for the implementation of the learner.}

\item{par.set}{(\link[ParamHelpers:makeParamSet]{ParamHelpers::ParamSet})\cr
Parameter set of (hyper)parameters and their constraints.
Dependent parameters with a \code{requires} field must use \code{quote} and not
\code{expression} to define it.}

\item{par.vals}{(\link{list})\cr
Always set hyperparameters to these values when the object is constructed.
Useful when default values are missing in the underlying function.
The values can later be overwritten when the user sets hyperparameters.
Default is empty list.}

\item{properties}{(\link{character})\cr
Set of learner properties. See above.
Default is \code{character(0)}.}

\item{name}{(\code{character(1)})\cr
Meaningful name for learner.
Default is \code{id}.}

\item{short.name}{(\code{character(1)})\cr
Short name for learner.
Should only be a few characters so it can be used in plots and tables.
Default is \code{id}.}

\item{note}{(\code{character(1)})\cr
Additional notes regarding the learner and its integration in mlr.
Default is \dQuote{}.}

\item{class.weights.param}{(\code{character(1)})\cr
Name of the parameter, which can be used for providing class weights.}

\item{callees}{(\link{character})\cr
Character vector naming all functions of the learner's package being called which
have a relevant R help page.
Default is \code{character(0)}.}
}
\value{
(\link{RLearner}). The specific subclass is one of \link{RLearnerClassif},
\link{RLearnerCluster}, \link{RLearnerMultilabel},
\link{RLearnerRegr}, \link{RLearnerSurv}.
}
\description{
Wraps an already implemented learning method from R to make it accessible to mlr.
Call this method in your constructor. You have to pass an id (name), the required
package(s), a description object for all changeable parameters (you do not have to do this for the
learner to work, but it is strongly recommended), and use property tags to define
features of the learner.

For a general overview on how to integrate a learning algorithm into mlr's system, please read the
section in the online tutorial:
\url{https://mlr.mlr-org.com/articles/tutorial/create_learner.html}

To see all possible properties of a learner, go to: \link{LearnerProperties}.
}