1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/calculateROCMeasures.R
\name{calculateROCMeasures}
\alias{calculateROCMeasures}
\alias{print.ROCMeasures}
\title{Calculate receiver operator measures.}
\usage{
calculateROCMeasures(pred)
\method{print}{ROCMeasures}(x, abbreviations = TRUE, digits = 2, ...)
}
\arguments{
\item{pred}{(\link{Prediction})\cr
Prediction object.}
\item{x}{(\code{ROCMeasures})\cr
Created by \link{calculateROCMeasures}.}
\item{abbreviations}{(\code{logical(1)})\cr
If \code{TRUE} a short paragraph with explanations of the used measures is printed additionally.}
\item{digits}{(\code{integer(1)})\cr
Number of digits the measures are rounded to.}
\item{...}{\code{(any)}\cr
Currently not used.}
}
\value{
(\code{ROCMeasures}).
A list containing two elements \code{confusion.matrix} which is
the 2 times 2 confusion matrix of absolute frequencies and \code{measures}, a list of the above mentioned measures.
}
\description{
Calculate the absolute number of correct/incorrect classifications and the following evaluation measures:
\itemize{
\item \code{tpr} True positive rate (Sensitivity, Recall)
\item \code{fpr} False positive rate (Fall-out)
\item \code{fnr} False negative rate (Miss rate)
\item \code{tnr} True negative rate (Specificity)
\item \code{ppv} Positive predictive value (Precision)
\item \code{for} False omission rate
\item \code{lrp} Positive likelihood ratio (LR+)
\item \code{fdr} False discovery rate
\item \code{npv} Negative predictive value
\item \code{acc} Accuracy
\item \code{lrm} Negative likelihood ratio (LR-)
\item \code{dor} Diagnostic odds ratio
}
For details on the used measures see \link{measures} and also
\url{https://en.wikipedia.org/wiki/Receiver_operating_characteristic}.
The element for the false omission rate in the resulting object is not called \code{for} but
\code{fomr} since \code{for} should never be used as a variable name in an object.
}
\section{Functions}{
\itemize{
\item \code{print(ROCMeasures)}:
}}
\examples{
\dontshow{ if (requireNamespace("rpart")) \{ }
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
calculateROCMeasures(pred)
\dontshow{ \} }
}
\seealso{
Other roc:
\code{\link{asROCRPrediction}()}
Other performance:
\code{\link{ConfusionMatrix}},
\code{\link{calculateConfusionMatrix}()},
\code{\link{estimateRelativeOverfitting}()},
\code{\link{makeCostMeasure}()},
\code{\link{makeCustomResampledMeasure}()},
\code{\link{makeMeasure}()},
\code{\link{measures}},
\code{\link{performance}()},
\code{\link{setAggregation}()},
\code{\link{setMeasurePars}()}
}
\concept{performance}
\concept{roc}
|