1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/extractFDAFeaturesMethods.R
\name{extractFDATsfeatures}
\alias{extractFDATsfeatures}
\title{Time-Series Feature Heuristics}
\usage{
extractFDATsfeatures(
scale = TRUE,
trim = FALSE,
trim_amount = 0.1,
parallel = FALSE,
na.action = na.pass,
feats = NULL,
...
)
}
\arguments{
\item{scale}{(\code{logical(1)})\cr
If TRUE, time series are scaled to mean 0 and sd 1 before features are computed.}
\item{trim}{(\code{logical(1)})\cr
If TRUE, time series are trimmed by \code{trim_amount} before features are computed.
Values larger than trim_amount in absolute value are set to NA.}
\item{trim_amount}{(\code{numeric(1)})\cr
Default level of trimming if \code{trim==TRUE}.}
\item{parallel}{(\code{logical(1)})\cr
If \code{TRUE}, multiple cores (or multiple sessions) will be used.
This only speeds things up when there are a large number of time series.}
\item{na.action}{(\code{logical(1)})\cr
A function to handle missing values. Use \code{na.interp} to estimate missing values}
\item{feats}{(\code{character})\cr
A character vector of function names to apply to each time-series in order to extract features.\cr
Default:\cr
feats = c("frequency", "stl_features", "entropy", "acf_features", "arch_stat",
"crossing_points", "flat_spots", "hurst", "holt_parameters", "lumpiness",
"max_kl_shift", "max_var_shift", "max_level_shift", "stability", "nonlinearity")}
\item{...}{(any)\cr
Further arguments passed on to the respective tsfeatures functions.}
}
\value{
(\link{data.frame})
}
\description{
The function extracts features from functional data based on known Heuristics.
For more details refer to \code{\link[tsfeatures:tsfeatures]{tsfeatures::tsfeatures()}}.
Under the hood this function uses the package \code{\link[tsfeatures:tsfeatures]{tsfeatures::tsfeatures()}}.
For more information see Hyndman, Wang and Laptev, Large-Scale Unusual Time Series Detection, ICDM 2015.
Note: Currently computes the following features:\cr
"frequency", "stl_features", "entropy", "acf_features", "arch_stat",
"crossing_points", "flat_spots", "hurst", "holt_parameters", "lumpiness",
"max_kl_shift", "max_var_shift", "max_level_shift", "stability", "nonlinearity"
}
\references{
Hyndman, Wang and Laptev, Large-Scale Unusual Time Series Detection, ICDM 2015.
}
\seealso{
Other fda_featextractor:
\code{\link{extractFDABsignal}()},
\code{\link{extractFDADTWKernel}()},
\code{\link{extractFDAFPCA}()},
\code{\link{extractFDAFourier}()},
\code{\link{extractFDAMultiResFeatures}()},
\code{\link{extractFDAWavelets}()}
}
\concept{fda_featextractor}
|