File: generateLearningCurveData.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (89 lines) | stat: -rw-r--r-- 2,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/generateLearningCurve.R
\name{generateLearningCurveData}
\alias{generateLearningCurveData}
\alias{LearningCurveData}
\title{Generates a learning curve.}
\usage{
generateLearningCurveData(
  learners,
  task,
  resampling = NULL,
  percs = seq(0.1, 1, by = 0.1),
  measures,
  stratify = FALSE,
  show.info = getMlrOption("show.info")
)
}
\arguments{
\item{learners}{[(list of) \link{Learner})\cr
Learning algorithms which should be compared.}

\item{task}{(\link{Task})\cr
The task.}

\item{resampling}{(\link{ResampleDesc} | \link{ResampleInstance})\cr
Resampling strategy to evaluate the performance measure.
If no strategy is given a default "Holdout" will be performed.}

\item{percs}{(\link{numeric})\cr
Vector of percentages to be drawn from the training split.
These values represent the x-axis.
Internally \link{makeDownsampleWrapper} is used in combination with \link{benchmark}.
Thus for each percentage a different set of observations is drawn resulting in noisy performance measures as the quality of the sample can differ.}

\item{measures}{[(list of) \link{Measure})\cr
Performance measures to generate learning curves for, representing the y-axis.}

\item{stratify}{(\code{logical(1)})\cr
Only for classification:
Should the downsampled data be stratified according to the target classes?}

\item{show.info}{(\code{logical(1)})\cr
Print verbose output on console?
Default is set via \link{configureMlr}.}
}
\value{
(\link{LearningCurveData}). A \code{list} containing:
\itemize{
\item The \link{Task}
\item List of \link{Measure})\cr
Performance measures
\item data (\link{data.frame}) with columns:
\itemize{
\item \code{learner} Names of learners.
\item \code{percentage} Percentages drawn from the training split.
\item One column for each \link{Measure} passed to \link{generateLearningCurveData}.
}
}
}
\description{
Observe how the performance changes with an increasing number of observations.
}
\examples{
\dontshow{ if (requireNamespace("class")) \{ }
\dontshow{ if (requireNamespace("rpart")) \{ }
r = generateLearningCurveData(list("classif.rpart", "classif.knn"),
  task = sonar.task, percs = seq(0.2, 1, by = 0.2),
  measures = list(tp, fp, tn, fn),
  resampling = makeResampleDesc(method = "Subsample", iters = 5),
  show.info = FALSE)
plotLearningCurve(r)
\dontshow{ \} }
\dontshow{ \} }
}
\seealso{
Other generate_plot_data: 
\code{\link{generateCalibrationData}()},
\code{\link{generateCritDifferencesData}()},
\code{\link{generateFeatureImportanceData}()},
\code{\link{generateFilterValuesData}()},
\code{\link{generatePartialDependenceData}()},
\code{\link{generateThreshVsPerfData}()},
\code{\link{plotFilterValues}()}

Other learning_curve: 
\code{\link{plotLearningCurve}()}
}
\concept{generate_plot_data}
\concept{learning_curve}