1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ImputeMethods.R
\name{imputations}
\alias{imputations}
\alias{imputeConstant}
\alias{imputeMedian}
\alias{imputeMean}
\alias{imputeMode}
\alias{imputeMin}
\alias{imputeMax}
\alias{imputeUniform}
\alias{imputeNormal}
\alias{imputeHist}
\alias{imputeLearner}
\title{Built-in imputation methods.}
\usage{
imputeConstant(const)
imputeMedian()
imputeMean()
imputeMode()
imputeMin(multiplier = 1)
imputeMax(multiplier = 1)
imputeUniform(min = NA_real_, max = NA_real_)
imputeNormal(mu = NA_real_, sd = NA_real_)
imputeHist(breaks, use.mids = TRUE)
imputeLearner(learner, features = NULL)
}
\arguments{
\item{const}{(any)\cr
Constant valued use for imputation.}
\item{multiplier}{(\code{numeric(1)})\cr
Value that stored minimum or maximum is multiplied with when imputation is done.}
\item{min}{(\code{numeric(1)})\cr
Lower bound for uniform distribution.
If NA (default), it will be estimated from the data.}
\item{max}{(\code{numeric(1)})\cr
Upper bound for uniform distribution.
If NA (default), it will be estimated from the data.}
\item{mu}{(\code{numeric(1)})\cr
Mean of normal distribution. If missing it will be estimated from the data.}
\item{sd}{(\code{numeric(1)})\cr
Standard deviation of normal distribution. If missing it will be estimated from the data.}
\item{breaks}{(\code{numeric(1)})\cr
Number of breaks to use in \link[graphics:hist]{graphics::hist}. If missing,
defaults to auto-detection via \dQuote{Sturges}.}
\item{use.mids}{(\code{logical(1)})\cr
If \code{x} is numeric and a histogram is used, impute with bin mids (default)
or instead draw uniformly distributed samples within bin range.}
\item{learner}{(\link{Learner} | \code{character(1)})\cr
Supervised learner. Its predictions will be used for imputations.
If you pass a string the learner will be created via \link{makeLearner}.
Note that the target column is not available for this operation.}
\item{features}{(\link{character})\cr
Features to use in \code{learner} for prediction.
Default is \code{NULL} which uses all available features except the target column
of the original task.}
}
\description{
The built-ins are:
\itemize{
\item \code{imputeConstant(const)} for imputation using a constant value,
\item \code{imputeMedian()} for imputation using the median,
\item \code{imputeMode()} for imputation using the mode,
\item \code{imputeMin(multiplier)} for imputing constant values shifted below the minimum
using \code{min(x) - multiplier * diff(range(x))},
\item \code{imputeMax(multiplier)} for imputing constant values shifted above the maximum
using \code{max(x) + multiplier * diff(range(x))},
\item \code{imputeNormal(mean, sd)} for imputation using normally
distributed random values. Mean and standard deviation will be calculated
from the data if not provided.
\item \code{imputeHist(breaks, use.mids)} for imputation using random values
with probabilities calculated using \code{table} or \code{hist}.
\item \code{imputeLearner(learner, features = NULL)} for imputations using the response
of a classification or regression learner.
}
}
\seealso{
Other impute:
\code{\link{impute}()},
\code{\link{makeImputeMethod}()},
\code{\link{makeImputeWrapper}()},
\code{\link{reimpute}()}
}
\concept{impute}
|