File: makeFilterWrapper.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (186 lines) | stat: -rw-r--r-- 6,343 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/FilterWrapper.R
\name{makeFilterWrapper}
\alias{makeFilterWrapper}
\title{Fuse learner with a feature filter method.}
\usage{
makeFilterWrapper(
  learner,
  fw.method = "FSelectorRcpp_information.gain",
  fw.base.methods = NULL,
  fw.perc = NULL,
  fw.abs = NULL,
  fw.threshold = NULL,
  fw.fun = NULL,
  fw.fun.args = NULL,
  fw.mandatory.feat = NULL,
  cache = FALSE,
  ...
)
}
\arguments{
\item{learner}{(\link{Learner} | \code{character(1)})\cr
The learner.
If you pass a string the learner will be created via \link{makeLearner}.}

\item{fw.method}{(\code{character(1)})\cr
Filter method. See \link{listFilterMethods}.
Default is \dQuote{FSelectorRcpp_information.gain}.}

\item{fw.base.methods}{(\code{character(1)})\cr
Simple Filter methods for ensemble filters. See \link{listFilterMethods}. Can
only be used in combination with ensemble filters. See
\link{listFilterEnsembleMethods}.}

\item{fw.perc}{(\code{numeric(1)})\cr
If set, select \code{fw.perc}*100 top scoring features. Mutually exclusive with
arguments \code{fw.abs}, \code{fw.threshold} and `fw.fun.}

\item{fw.abs}{(\code{numeric(1)})\cr
If set, select \code{fw.abs} top scoring features.
Mutually exclusive with arguments \code{fw.perc}, \code{fw.threshold} and \code{fw.fun}.}

\item{fw.threshold}{(\code{numeric(1)})\cr
If set, select features whose score exceeds \code{fw.threshold}. Mutually
exclusive with arguments \code{fw.perc}, \code{fw.abs} and \code{fw.fun}.}

\item{fw.fun}{(\verb{function)})\cr
If set, select features via a custom thresholding function, which must
return the number of top scoring features to select. Mutually exclusive
with arguments \code{fw.perc}, \code{fw.abs} and \code{fw.threshold}.}

\item{fw.fun.args}{(any)\cr
Arguments passed to the custom thresholding function}

\item{fw.mandatory.feat}{(\link{character})\cr
Mandatory features which are always
included regardless of their scores}

\item{cache}{(\code{character(1)} | \link{logical})\cr
Whether to use caching during
filter value creation. See details.}

\item{...}{(any)\cr
Additional parameters passed down to the filter. If you are using more than
one filter method, you need to pass the arguments in a named list via
\code{more.args}. For example \code{more.args = list("FSelectorRcpp_information.gain" = list(equal = TRUE))}.}
}
\value{
\link{Learner}.
}
\description{
Fuses a base learner with a filter method. Creates a learner
object, which can be used like any other learner object. Internally uses
\link{filterFeatures} before every model fit.
}
\details{
If \code{ensemble = TRUE}, ensemble feature selection using all methods specified
in \code{fw.method} is performed. At least two methods need to be selected.

After training, the selected features can be retrieved with
\link{getFilteredFeatures}.

Note that observation weights do not influence the filtering and are simply
passed down to the next learner.
}
\section{Caching}{

If \code{cache = TRUE}, the default mlr cache directory is used to cache filter
values. The directory is operating system dependent and can be checked with
\code{getCacheDir()}. Alternatively a custom directory can be passed to store
the cache. The cache can be cleared with \code{deleteCacheDir()}. Caching is
disabled by default. Care should be taken when operating on large clusters
due to possible write conflicts to disk if multiple workers try to write
the same cache at the same time.
}

\examples{
\dontshow{ if (requireNamespace("FSelectorRcpp")) \{ }
\donttest{
task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda")
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeFilterWrapper(lrn, fw.perc = 0.5)
mod = train(lrn, task)
print(getFilteredFeatures(mod))
# now nested resampling, where we extract the features that the filter method selected
r = resample(lrn, task, outer, extract = function(model) {
  getFilteredFeatures(model)
})
print(r$extract)

# usage of an ensemble filter
lrn = makeLearner("classif.lda")
lrn = makeFilterWrapper(lrn, fw.method = "E-Borda",
  fw.base.methods = c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain"),
  fw.perc = 0.5)
r = resample(lrn, task, outer, extract = function(model) {
  getFilteredFeatures(model)
})
print(r$extract)

# usage of a custom thresholding function
biggest_gap = function(values, diff) {
  gap_size = 0
  gap_location = 0

  for (i in (diff + 1):length(values)) {
    gap = values[[i - diff]] - values[[i]]
    if (gap > gap_size) {
      gap_size = gap
      gap_location = i - 1
    }
  }
  return(gap_location)
}

lrn = makeLearner("classif.lda")
lrn = makeFilterWrapper(lrn, fw.method = "FSelectorRcpp_information.gain",
  fw.fun = biggest_gap, fw.fun.args = list("diff" = 1))
r = resample(lrn, task, outer, extract = function(model) {
  getFilteredFeatures(model)
})
print(r$extract)
}
\dontshow{ \} }
}
\seealso{
Other filter: 
\code{\link{filterFeatures}()},
\code{\link{generateFilterValuesData}()},
\code{\link{getFilteredFeatures}()},
\code{\link{listFilterEnsembleMethods}()},
\code{\link{listFilterMethods}()},
\code{\link{makeFilter}()},
\code{\link{makeFilterEnsemble}()},
\code{\link{plotFilterValues}()}

Other wrapper: 
\code{\link{makeBaggingWrapper}()},
\code{\link{makeClassificationViaRegressionWrapper}()},
\code{\link{makeConstantClassWrapper}()},
\code{\link{makeCostSensClassifWrapper}()},
\code{\link{makeCostSensRegrWrapper}()},
\code{\link{makeDownsampleWrapper}()},
\code{\link{makeDummyFeaturesWrapper}()},
\code{\link{makeExtractFDAFeatsWrapper}()},
\code{\link{makeFeatSelWrapper}()},
\code{\link{makeImputeWrapper}()},
\code{\link{makeMulticlassWrapper}()},
\code{\link{makeMultilabelBinaryRelevanceWrapper}()},
\code{\link{makeMultilabelClassifierChainsWrapper}()},
\code{\link{makeMultilabelDBRWrapper}()},
\code{\link{makeMultilabelNestedStackingWrapper}()},
\code{\link{makeMultilabelStackingWrapper}()},
\code{\link{makeOverBaggingWrapper}()},
\code{\link{makePreprocWrapper}()},
\code{\link{makePreprocWrapperCaret}()},
\code{\link{makeRemoveConstantFeaturesWrapper}()},
\code{\link{makeSMOTEWrapper}()},
\code{\link{makeTuneWrapper}()},
\code{\link{makeUndersampleWrapper}()},
\code{\link{makeWeightedClassesWrapper}()}
}
\concept{filter}
\concept{wrapper}