1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/RemoveConstantFeaturesWrapper.R
\name{makeRemoveConstantFeaturesWrapper}
\alias{makeRemoveConstantFeaturesWrapper}
\title{Fuse learner with removal of constant features preprocessing.}
\usage{
makeRemoveConstantFeaturesWrapper(
learner,
perc = 0,
dont.rm = character(0L),
na.ignore = FALSE,
wrap.tol = .Machine$double.eps^0.5
)
}
\arguments{
\item{learner}{(\link{Learner} | \code{character(1)})\cr
The learner.
If you pass a string the learner will be created via \link{makeLearner}.}
\item{perc}{(\code{numeric(1)})\cr
The percentage of a feature values in [0, 1) that must differ from the mode value.
Default is 0, which means only constant features with exactly one observed level are removed.}
\item{dont.rm}{(\link{character})\cr
Names of the columns which must not be deleted.
Default is no columns.}
\item{na.ignore}{(\code{logical(1)})\cr
Should NAs be ignored in the percentage calculation?
(Or should they be treated as a single, extra level in the percentage calculation?)
Note that if the feature has only missing values, it is always removed.
Default is \code{FALSE}.}
\item{wrap.tol}{(\code{numeric(1)})\cr
Numerical tolerance to treat two numbers as equal.
Variables stored as \code{double} will get rounded accordingly before computing the mode.
Default is \code{sqrt(.Maschine$double.eps)}.}
}
\value{
\link{Learner}.
}
\description{
Fuses a base learner with the preprocessing implemented in \link{removeConstantFeatures}.
}
\seealso{
Other wrapper:
\code{\link{makeBaggingWrapper}()},
\code{\link{makeClassificationViaRegressionWrapper}()},
\code{\link{makeConstantClassWrapper}()},
\code{\link{makeCostSensClassifWrapper}()},
\code{\link{makeCostSensRegrWrapper}()},
\code{\link{makeDownsampleWrapper}()},
\code{\link{makeDummyFeaturesWrapper}()},
\code{\link{makeExtractFDAFeatsWrapper}()},
\code{\link{makeFeatSelWrapper}()},
\code{\link{makeFilterWrapper}()},
\code{\link{makeImputeWrapper}()},
\code{\link{makeMulticlassWrapper}()},
\code{\link{makeMultilabelBinaryRelevanceWrapper}()},
\code{\link{makeMultilabelClassifierChainsWrapper}()},
\code{\link{makeMultilabelDBRWrapper}()},
\code{\link{makeMultilabelNestedStackingWrapper}()},
\code{\link{makeMultilabelStackingWrapper}()},
\code{\link{makeOverBaggingWrapper}()},
\code{\link{makePreprocWrapper}()},
\code{\link{makePreprocWrapperCaret}()},
\code{\link{makeSMOTEWrapper}()},
\code{\link{makeTuneWrapper}()},
\code{\link{makeUndersampleWrapper}()},
\code{\link{makeWeightedClassesWrapper}()}
}
\concept{wrapper}
|