1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/TuneWrapper.R
\name{makeTuneWrapper}
\alias{makeTuneWrapper}
\title{Fuse learner with tuning.}
\usage{
makeTuneWrapper(
learner,
resampling,
measures,
par.set,
control,
show.info = getMlrOption("show.info")
)
}
\arguments{
\item{learner}{(\link{Learner} | \code{character(1)})\cr
The learner.
If you pass a string the learner will be created via \link{makeLearner}.}
\item{resampling}{(\link{ResampleInstance} | \link{ResampleDesc})\cr
Resampling strategy to evaluate points in hyperparameter space. If you pass a description,
it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets.
If you want to change that behavior, look at \link{TuneControl}.}
\item{measures}{(list of \link{Measure} | \link{Measure})\cr
Performance measures to evaluate. The first measure, aggregated by the first aggregation function
is optimized, others are simply evaluated.
Default is the default measure for the task, see here \link{getDefaultMeasure}.}
\item{par.set}{(\link[ParamHelpers:makeParamSet]{ParamHelpers::ParamSet})\cr
Collection of parameters and their constraints for optimization.
Dependent parameters with a \code{requires} field must use \code{quote} and not
\code{expression} to define it.}
\item{control}{(\link{TuneControl})\cr
Control object for search method. Also selects the optimization algorithm for tuning.}
\item{show.info}{(\code{logical(1)})\cr
Print verbose output on console?
Default is set via \link{configureMlr}.}
}
\value{
\link{Learner}.
}
\description{
Fuses a base learner with a search strategy to select its hyperparameters.
Creates a learner object, which can be used like any other learner object,
but which internally uses \link{tuneParams}.
If the train function is called on it,
the search strategy and resampling are invoked
to select an optimal set of hyperparameter values. Finally, a model is fitted on the
complete training data with these optimal hyperparameters and returned.
See \link{tuneParams} for more details.
After training, the optimal hyperparameters (and other related information) can be retrieved with
\link{getTuneResult}.
}
\examples{
\dontshow{ if (requireNamespace("rpart")) \{ }
\donttest{
task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.rpart")
# stupid mini grid
ps = makeParamSet(
makeDiscreteParam("cp", values = c(0.05, 0.1)),
makeDiscreteParam("minsplit", values = c(10, 20))
)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control = ctrl)
mod = train(lrn, task)
print(getTuneResult(mod))
# nested resampling for evaluation
# we also extract tuned hyper pars in each iteration
r = resample(lrn, task, outer, extract = getTuneResult)
print(r$extract)
getNestedTuneResultsOptPathDf(r)
getNestedTuneResultsX(r)
}
\dontshow{ \} }
}
\seealso{
Other tune:
\code{\link{TuneControl}},
\code{\link{getNestedTuneResultsOptPathDf}()},
\code{\link{getNestedTuneResultsX}()},
\code{\link{getResamplingIndices}()},
\code{\link{getTuneResult}()},
\code{\link{makeModelMultiplexer}()},
\code{\link{makeModelMultiplexerParamSet}()},
\code{\link{makeTuneControlCMAES}()},
\code{\link{makeTuneControlDesign}()},
\code{\link{makeTuneControlGenSA}()},
\code{\link{makeTuneControlGrid}()},
\code{\link{makeTuneControlIrace}()},
\code{\link{makeTuneControlMBO}()},
\code{\link{makeTuneControlRandom}()},
\code{\link{tuneParams}()},
\code{\link{tuneThreshold}()}
Other wrapper:
\code{\link{makeBaggingWrapper}()},
\code{\link{makeClassificationViaRegressionWrapper}()},
\code{\link{makeConstantClassWrapper}()},
\code{\link{makeCostSensClassifWrapper}()},
\code{\link{makeCostSensRegrWrapper}()},
\code{\link{makeDownsampleWrapper}()},
\code{\link{makeDummyFeaturesWrapper}()},
\code{\link{makeExtractFDAFeatsWrapper}()},
\code{\link{makeFeatSelWrapper}()},
\code{\link{makeFilterWrapper}()},
\code{\link{makeImputeWrapper}()},
\code{\link{makeMulticlassWrapper}()},
\code{\link{makeMultilabelBinaryRelevanceWrapper}()},
\code{\link{makeMultilabelClassifierChainsWrapper}()},
\code{\link{makeMultilabelDBRWrapper}()},
\code{\link{makeMultilabelNestedStackingWrapper}()},
\code{\link{makeMultilabelStackingWrapper}()},
\code{\link{makeOverBaggingWrapper}()},
\code{\link{makePreprocWrapper}()},
\code{\link{makePreprocWrapperCaret}()},
\code{\link{makeRemoveConstantFeaturesWrapper}()},
\code{\link{makeSMOTEWrapper}()},
\code{\link{makeUndersampleWrapper}()},
\code{\link{makeWeightedClassesWrapper}()}
}
\concept{tune}
\concept{wrapper}
|