File: makeTuneWrapper.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (131 lines) | stat: -rw-r--r-- 4,685 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/TuneWrapper.R
\name{makeTuneWrapper}
\alias{makeTuneWrapper}
\title{Fuse learner with tuning.}
\usage{
makeTuneWrapper(
  learner,
  resampling,
  measures,
  par.set,
  control,
  show.info = getMlrOption("show.info")
)
}
\arguments{
\item{learner}{(\link{Learner} | \code{character(1)})\cr
The learner.
If you pass a string the learner will be created via \link{makeLearner}.}

\item{resampling}{(\link{ResampleInstance} | \link{ResampleDesc})\cr
Resampling strategy to evaluate points in hyperparameter space. If you pass a description,
it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets.
If you want to change that behavior, look at \link{TuneControl}.}

\item{measures}{(list of \link{Measure} | \link{Measure})\cr
Performance measures to evaluate. The first measure, aggregated by the first aggregation function
is optimized, others are simply evaluated.
Default is the default measure for the task, see here \link{getDefaultMeasure}.}

\item{par.set}{(\link[ParamHelpers:makeParamSet]{ParamHelpers::ParamSet})\cr
Collection of parameters and their constraints for optimization.
Dependent parameters with a \code{requires} field must use \code{quote} and not
\code{expression} to define it.}

\item{control}{(\link{TuneControl})\cr
Control object for search method. Also selects the optimization algorithm for tuning.}

\item{show.info}{(\code{logical(1)})\cr
Print verbose output on console?
Default is set via \link{configureMlr}.}
}
\value{
\link{Learner}.
}
\description{
Fuses a base learner with a search strategy to select its hyperparameters.
Creates a learner object, which can be used like any other learner object,
but which internally uses \link{tuneParams}.
If the train function is called on it,
the search strategy and resampling are invoked
to select an optimal set of hyperparameter values. Finally, a model is fitted on the
complete training data with these optimal hyperparameters and returned.
See \link{tuneParams} for more details.

After training, the optimal hyperparameters (and other related information) can be retrieved with
\link{getTuneResult}.
}
\examples{
\dontshow{ if (requireNamespace("rpart")) \{ }
\donttest{
task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.rpart")
# stupid mini grid
ps = makeParamSet(
  makeDiscreteParam("cp", values = c(0.05, 0.1)),
  makeDiscreteParam("minsplit", values = c(10, 20))
)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control = ctrl)
mod = train(lrn, task)
print(getTuneResult(mod))
# nested resampling for evaluation
# we also extract tuned hyper pars in each iteration
r = resample(lrn, task, outer, extract = getTuneResult)
print(r$extract)
getNestedTuneResultsOptPathDf(r)
getNestedTuneResultsX(r)
}
\dontshow{ \} }
}
\seealso{
Other tune: 
\code{\link{TuneControl}},
\code{\link{getNestedTuneResultsOptPathDf}()},
\code{\link{getNestedTuneResultsX}()},
\code{\link{getResamplingIndices}()},
\code{\link{getTuneResult}()},
\code{\link{makeModelMultiplexer}()},
\code{\link{makeModelMultiplexerParamSet}()},
\code{\link{makeTuneControlCMAES}()},
\code{\link{makeTuneControlDesign}()},
\code{\link{makeTuneControlGenSA}()},
\code{\link{makeTuneControlGrid}()},
\code{\link{makeTuneControlIrace}()},
\code{\link{makeTuneControlMBO}()},
\code{\link{makeTuneControlRandom}()},
\code{\link{tuneParams}()},
\code{\link{tuneThreshold}()}

Other wrapper: 
\code{\link{makeBaggingWrapper}()},
\code{\link{makeClassificationViaRegressionWrapper}()},
\code{\link{makeConstantClassWrapper}()},
\code{\link{makeCostSensClassifWrapper}()},
\code{\link{makeCostSensRegrWrapper}()},
\code{\link{makeDownsampleWrapper}()},
\code{\link{makeDummyFeaturesWrapper}()},
\code{\link{makeExtractFDAFeatsWrapper}()},
\code{\link{makeFeatSelWrapper}()},
\code{\link{makeFilterWrapper}()},
\code{\link{makeImputeWrapper}()},
\code{\link{makeMulticlassWrapper}()},
\code{\link{makeMultilabelBinaryRelevanceWrapper}()},
\code{\link{makeMultilabelClassifierChainsWrapper}()},
\code{\link{makeMultilabelDBRWrapper}()},
\code{\link{makeMultilabelNestedStackingWrapper}()},
\code{\link{makeMultilabelStackingWrapper}()},
\code{\link{makeOverBaggingWrapper}()},
\code{\link{makePreprocWrapper}()},
\code{\link{makePreprocWrapperCaret}()},
\code{\link{makeRemoveConstantFeaturesWrapper}()},
\code{\link{makeSMOTEWrapper}()},
\code{\link{makeUndersampleWrapper}()},
\code{\link{makeWeightedClassesWrapper}()}
}
\concept{tune}
\concept{wrapper}