1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/measures.R
\docType{data}
\name{measures}
\alias{measures}
\alias{featperc}
\alias{timetrain}
\alias{timepredict}
\alias{timeboth}
\alias{sse}
\alias{measureSSE}
\alias{mse}
\alias{measureMSE}
\alias{rmse}
\alias{measureRMSE}
\alias{medse}
\alias{measureMEDSE}
\alias{sae}
\alias{measureSAE}
\alias{mae}
\alias{measureMAE}
\alias{medae}
\alias{measureMEDAE}
\alias{rsq}
\alias{measureRSQ}
\alias{expvar}
\alias{measureEXPVAR}
\alias{rrse}
\alias{measureRRSE}
\alias{rae}
\alias{measureRAE}
\alias{mape}
\alias{measureMAPE}
\alias{msle}
\alias{measureMSLE}
\alias{rmsle}
\alias{measureRMSLE}
\alias{kendalltau}
\alias{measureKendallTau}
\alias{spearmanrho}
\alias{measureSpearmanRho}
\alias{mmce}
\alias{measureMMCE}
\alias{acc}
\alias{measureACC}
\alias{ber}
\alias{measureBER}
\alias{multiclass.aunu}
\alias{measureAUNU}
\alias{multiclass.aunp}
\alias{measureAUNP}
\alias{multiclass.au1u}
\alias{measureAU1U}
\alias{multiclass.au1p}
\alias{measureAU1P}
\alias{multiclass.brier}
\alias{measureMulticlassBrier}
\alias{logloss}
\alias{measureLogloss}
\alias{ssr}
\alias{measureSSR}
\alias{qsr}
\alias{measureQSR}
\alias{lsr}
\alias{measureLSR}
\alias{kappa}
\alias{measureKAPPA}
\alias{wkappa}
\alias{measureWKAPPA}
\alias{auc}
\alias{measureAUC}
\alias{brier}
\alias{measureBrier}
\alias{brier.scaled}
\alias{measureBrierScaled}
\alias{bac}
\alias{measureBAC}
\alias{tp}
\alias{measureTP}
\alias{tn}
\alias{measureTN}
\alias{fp}
\alias{measureFP}
\alias{fn}
\alias{measureFN}
\alias{tpr}
\alias{measureTPR}
\alias{tnr}
\alias{measureTNR}
\alias{fpr}
\alias{measureFPR}
\alias{fnr}
\alias{measureFNR}
\alias{ppv}
\alias{measurePPV}
\alias{npv}
\alias{measureNPV}
\alias{fdr}
\alias{measureFDR}
\alias{mcc}
\alias{measureMCC}
\alias{f1}
\alias{measureF1}
\alias{gmean}
\alias{measureGMEAN}
\alias{gpr}
\alias{measureGPR}
\alias{multilabel.hamloss}
\alias{measureMultilabelHamloss}
\alias{multilabel.subset01}
\alias{measureMultilabelSubset01}
\alias{multilabel.f1}
\alias{measureMultilabelF1}
\alias{multilabel.acc}
\alias{measureMultilabelACC}
\alias{multilabel.ppv}
\alias{measureMultilabelPPV}
\alias{multilabel.tpr}
\alias{measureMultilabelTPR}
\alias{cindex}
\alias{cindex.uno}
\alias{iauc.uno}
\alias{ibrier}
\alias{meancosts}
\alias{mcp}
\alias{db}
\alias{G1}
\alias{G2}
\alias{silhouette}
\title{Performance measures.}
\usage{
measureSSE(truth, response)
measureMSE(truth, response)
measureRMSE(truth, response)
measureMEDSE(truth, response)
measureSAE(truth, response)
measureMAE(truth, response)
measureMEDAE(truth, response)
measureRSQ(truth, response)
measureEXPVAR(truth, response)
measureRRSE(truth, response)
measureRAE(truth, response)
measureMAPE(truth, response)
measureMSLE(truth, response)
measureRMSLE(truth, response)
measureKendallTau(truth, response)
measureSpearmanRho(truth, response)
measureMMCE(truth, response)
measureACC(truth, response)
measureBER(truth, response)
measureAUNU(probabilities, truth)
measureAUNP(probabilities, truth)
measureAU1U(probabilities, truth)
measureAU1P(probabilities, truth)
measureMulticlassBrier(probabilities, truth)
measureLogloss(probabilities, truth)
measureSSR(probabilities, truth)
measureQSR(probabilities, truth)
measureLSR(probabilities, truth)
measureKAPPA(truth, response)
measureWKAPPA(truth, response)
measureAUC(probabilities, truth, negative, positive)
measureBrier(probabilities, truth, negative, positive)
measureBrierScaled(probabilities, truth, negative, positive)
measureBAC(truth, response)
measureTP(truth, response, positive)
measureTN(truth, response, negative)
measureFP(truth, response, positive)
measureFN(truth, response, negative)
measureTPR(truth, response, positive)
measureTNR(truth, response, negative)
measureFPR(truth, response, negative, positive)
measureFNR(truth, response, negative, positive)
measurePPV(truth, response, positive, probabilities = NULL)
measureNPV(truth, response, negative)
measureFDR(truth, response, positive)
measureMCC(truth, response, negative, positive)
measureF1(truth, response, positive)
measureGMEAN(truth, response, negative, positive)
measureGPR(truth, response, positive)
measureMultilabelHamloss(truth, response)
measureMultilabelSubset01(truth, response)
measureMultilabelF1(truth, response)
measureMultilabelACC(truth, response)
measureMultilabelPPV(truth, response)
measureMultilabelTPR(truth, response)
}
\arguments{
\item{truth}{(\link{factor})\cr
Vector of the true class.}
\item{response}{(\link{factor})\cr
Vector of the predicted class.}
\item{probabilities}{(\link{numeric} | \link{matrix})\cr
a) For purely binary classification measures: The predicted probabilities for the positive class as a numeric vector.
b) For multiclass classification measures: The predicted probabilities for all classes, always as a numeric matrix, where
columns are named with class labels.}
\item{negative}{(\code{character(1)})\cr
The name of the negative class.}
\item{positive}{(\code{character(1)})\cr
The name of the positive class.}
}
\description{
A performance measure is evaluated after a single train/predict step and
returns a single number to assess the quality of the prediction (or maybe
only the model, think AIC). The measure itself knows whether it wants to be
minimized or maximized and for what tasks it is applicable.
All supported measures can be found by \link{listMeasures} or as a table in the
tutorial appendix: \url{https://mlr.mlr-org.com/articles/tutorial/measures.html}.
If you want a measure for a misclassification cost matrix, look at
\link{makeCostMeasure}. If you want to implement your own measure, look at
\link{makeMeasure}.
Most measures can directly be accessed via the function named after the
scheme measureX (e.g. measureSSE).
For clustering measures, we compact the predicted cluster IDs such that they
form a continuous series starting with 1. If this is not the case, some of
the measures will generate warnings.
Some measure have parameters. Their defaults are set in the constructor
\link{makeMeasure} and can be overwritten using \link{setMeasurePars}.
}
\references{
He, H. & Garcia, E. A. (2009)
\emph{Learning from Imbalanced Data.}
IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9. pp. 1263-1284.
H. Uno et al.
\emph{On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures with Censored Survival Data}
Statistics in medicine. 2011;30(10):1105-1117. \doi{10.1002/sim.4154}.
H. Uno et al.
\emph{Evaluating Prediction Rules for T-Year Survivors with Censored Regression Models}
Journal of the American Statistical Association 102, no. 478 (2007): 527-37.
}
\seealso{
Other performance:
\code{\link{ConfusionMatrix}},
\code{\link{calculateConfusionMatrix}()},
\code{\link{calculateROCMeasures}()},
\code{\link{estimateRelativeOverfitting}()},
\code{\link{makeCostMeasure}()},
\code{\link{makeCustomResampledMeasure}()},
\code{\link{makeMeasure}()},
\code{\link{performance}()},
\code{\link{setAggregation}()},
\code{\link{setMeasurePars}()}
}
\concept{performance}
\keyword{datasets}
|