File: plotBMRSummary.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (98 lines) | stat: -rw-r--r-- 3,066 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plotBMRSummary.R
\name{plotBMRSummary}
\alias{plotBMRSummary}
\title{Plot a benchmark summary.}
\usage{
plotBMRSummary(
  bmr,
  measure = NULL,
  trafo = "none",
  order.tsks = NULL,
  pointsize = 4L,
  jitter = 0.05,
  pretty.names = TRUE
)
}
\arguments{
\item{bmr}{(\link{BenchmarkResult})\cr
Benchmark result.}

\item{measure}{(\link{Measure})\cr
Performance measure.
Default is the first measure used in the benchmark experiment.}

\item{trafo}{(\code{character(1)})\cr
Currently either \dQuote{none} or \dQuote{rank}, the latter performing a rank transformation
(with average handling of ties) of the scores per task.
NB: You can add always add \link[ggplot2:scale_continuous]{ggplot2::scale_x_log10} to the result to put scores on a log scale.
Default is \dQuote{none}.}

\item{order.tsks}{(\code{character(n.tasks)})\cr
Character vector with \code{task.ids} in new order.}

\item{pointsize}{(\code{numeric(1)})\cr
Point size for ggplot2 \link[ggplot2:geom_point]{ggplot2::geom_point} for data points.
Default is 4.}

\item{jitter}{(\code{numeric(1)})\cr
Small vertical jitter to deal with overplotting in case of equal scores.
Default is 0.05.}

\item{pretty.names}{(\code{logical(1)})\cr
Whether to use the short name of the learner instead of its ID in labels. Defaults to \code{TRUE}.}
}
\value{
ggplot2 plot object.
}
\description{
Creates a scatter plot, where each line refers to a task.
On that line the aggregated scores for all learners are plotted, for that task.
Optionally, you can apply a rank transformation or just use one of ggplot2's transformations
like \link[ggplot2:scale_continuous]{ggplot2::scale_x_log10}.
}
\examples{
# see benchmark
}
\seealso{
Other benchmark: 
\code{\link{BenchmarkResult}},
\code{\link{batchmark}()},
\code{\link{benchmark}()},
\code{\link{convertBMRToRankMatrix}()},
\code{\link{friedmanPostHocTestBMR}()},
\code{\link{friedmanTestBMR}()},
\code{\link{generateCritDifferencesData}()},
\code{\link{getBMRAggrPerformances}()},
\code{\link{getBMRFeatSelResults}()},
\code{\link{getBMRFilteredFeatures}()},
\code{\link{getBMRLearnerIds}()},
\code{\link{getBMRLearnerShortNames}()},
\code{\link{getBMRLearners}()},
\code{\link{getBMRMeasureIds}()},
\code{\link{getBMRMeasures}()},
\code{\link{getBMRModels}()},
\code{\link{getBMRPerformances}()},
\code{\link{getBMRPredictions}()},
\code{\link{getBMRTaskDescs}()},
\code{\link{getBMRTaskIds}()},
\code{\link{getBMRTuneResults}()},
\code{\link{plotBMRBoxplots}()},
\code{\link{plotBMRRanksAsBarChart}()},
\code{\link{plotCritDifferences}()},
\code{\link{reduceBatchmarkResults}()}

Other plot: 
\code{\link{createSpatialResamplingPlots}()},
\code{\link{plotBMRBoxplots}()},
\code{\link{plotBMRRanksAsBarChart}()},
\code{\link{plotCalibration}()},
\code{\link{plotCritDifferences}()},
\code{\link{plotLearningCurve}()},
\code{\link{plotPartialDependence}()},
\code{\link{plotROCCurves}()},
\code{\link{plotResiduals}()},
\code{\link{plotThreshVsPerf}()}
}
\concept{benchmark}
\concept{plot}