File: plotCalibration.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (81 lines) | stat: -rw-r--r-- 2,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/generateCalibration.R
\name{plotCalibration}
\alias{plotCalibration}
\title{Plot calibration data using ggplot2.}
\usage{
plotCalibration(
  obj,
  smooth = FALSE,
  reference = TRUE,
  rag = TRUE,
  facet.wrap.nrow = NULL,
  facet.wrap.ncol = NULL
)
}
\arguments{
\item{obj}{(\link{CalibrationData})\cr
Result of \link{generateCalibrationData}.}

\item{smooth}{(\code{logical(1)})\cr
Whether to use a loess smoother.
Default is \code{FALSE}.}

\item{reference}{(\code{logical(1)})\cr
Whether to plot a reference line showing perfect calibration.
Default is \code{TRUE}.}

\item{rag}{(\code{logical(1)})\cr
Whether to include a rag plot which shows a rug plot on the top which pertains to
positive cases and on the bottom which pertains to negative cases.
Default is \code{TRUE}.}

\item{facet.wrap.nrow, facet.wrap.ncol}{(\link{integer})\cr
Number of rows and columns for facetting. Default for both is \code{NULL}.
In this case ggplot's \code{facet_wrap} will choose the layout itself.}
}
\value{
ggplot2 plot object.
}
\description{
Plots calibration data from \link{generateCalibrationData}.
}
\examples{
\dontshow{ if (requireNamespace("rpart")) \{ }
\dontshow{ if (requireNamespace("Hmisc")) \{ }
\dontrun{
lrns = list(makeLearner("classif.rpart", predict.type = "prob"),
  makeLearner("classif.nnet", predict.type = "prob"))
fit = lapply(lrns, train, task = iris.task)
pred = lapply(fit, predict, task = iris.task)
names(pred) = c("rpart", "nnet")
out = generateCalibrationData(pred, groups = 3)
plotCalibration(out)

fit = lapply(lrns, train, task = sonar.task)
pred = lapply(fit, predict, task = sonar.task)
names(pred) = c("rpart", "lda")
out = generateCalibrationData(pred)
plotCalibration(out)
}
\dontshow{ \} }
\dontshow{ \} }
}
\seealso{
Other plot: 
\code{\link{createSpatialResamplingPlots}()},
\code{\link{plotBMRBoxplots}()},
\code{\link{plotBMRRanksAsBarChart}()},
\code{\link{plotBMRSummary}()},
\code{\link{plotCritDifferences}()},
\code{\link{plotLearningCurve}()},
\code{\link{plotPartialDependence}()},
\code{\link{plotROCCurves}()},
\code{\link{plotResiduals}()},
\code{\link{plotThreshVsPerf}()}

Other calibration: 
\code{\link{generateCalibrationData}()}
}
\concept{calibration}
\concept{plot}