File: tuneParams.Rd

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (153 lines) | stat: -rw-r--r-- 5,927 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/tuneParams.R
\name{tuneParams}
\alias{tuneParams}
\title{Hyperparameter tuning.}
\usage{
tuneParams(
  learner,
  task,
  resampling,
  measures,
  par.set,
  control,
  show.info = getMlrOption("show.info"),
  resample.fun = resample
)
}
\arguments{
\item{learner}{(\link{Learner} | \code{character(1)})\cr
The learner.
If you pass a string the learner will be created via \link{makeLearner}.}

\item{task}{(\link{Task})\cr
The task.}

\item{resampling}{(\link{ResampleInstance} | \link{ResampleDesc})\cr
Resampling strategy to evaluate points in hyperparameter space. If you pass a description,
it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets.
If you want to change that behavior, look at \link{TuneControl}.}

\item{measures}{(list of \link{Measure} | \link{Measure})\cr
Performance measures to evaluate. The first measure, aggregated by the first aggregation function
is optimized, others are simply evaluated.
Default is the default measure for the task, see here \link{getDefaultMeasure}.}

\item{par.set}{(\link[ParamHelpers:makeParamSet]{ParamHelpers::ParamSet})\cr
Collection of parameters and their constraints for optimization.
Dependent parameters with a \code{requires} field must use \code{quote} and not
\code{expression} to define it.}

\item{control}{(\link{TuneControl})\cr
Control object for search method. Also selects the optimization algorithm for tuning.}

\item{show.info}{(\code{logical(1)})\cr
Print verbose output on console?
Default is set via \link{configureMlr}.}

\item{resample.fun}{(\link{closure})\cr
The function to use for resampling. Defaults to \link{resample}. If a user-given function
is to be used instead, it should take the arguments \dQuote{learner}, \dQuote{task}, \dQuote{resampling},
\dQuote{measures}, and \dQuote{show.info}; see \link{resample}. Within this function,
it is easiest to call \link{resample} and possibly modify the result.
However, it is possible to return a list with only the following essential slots:
the \dQuote{aggr} slot for general tuning, additionally the \dQuote{pred} slot if threshold tuning is performed
(see \link{TuneControl}), and the \dQuote{err.msgs} and \dQuote{err.dumps} slots for error reporting.
This parameter must be the default when \code{mbo} tuning is performed.}
}
\value{
(\link{TuneResult}).
}
\description{
Optimizes the hyperparameters of a learner.
Allows for different optimization methods, such as grid search, evolutionary strategies,
iterated F-race, etc. You can select such an algorithm (and its settings)
by passing a corresponding control object. For a complete list of implemented algorithms look at
\link{TuneControl}.

Multi-criteria tuning can be done with \link{tuneParamsMultiCrit}.
}
\note{
If you would like to include results from the training data set, make
sure to appropriately adjust the resampling strategy and the aggregation for
the measure. See example code below.
}
\examples{
\dontshow{ if (requireNamespace("kernlab")) \{ }
\dontshow{ if (requireNamespace("kernlab")) \{ }
\dontshow{ if (requireNamespace("irace")) \{ }
set.seed(123)
# a grid search for an SVM (with a tiny number of points...)
# note how easily we can optimize on a log-scale
ps = makeParamSet(
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneControlGrid(resolution = 2L)
rdesc = makeResampleDesc("CV", iters = 2L)
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)
print(res)
# access data for all evaluated points
df = as.data.frame(res$opt.path)
df1 = as.data.frame(res$opt.path, trafo = TRUE)
print(head(df[, -ncol(df)]))
print(head(df1[, -ncol(df)]))
# access data for all evaluated points - alternative
df2 = generateHyperParsEffectData(res)
df3 = generateHyperParsEffectData(res, trafo = TRUE)
print(head(df2$data[, -ncol(df2$data)]))
print(head(df3$data[, -ncol(df3$data)]))
\dontrun{
# we optimize the SVM over 3 kernels simultanously
# note how we use dependent params (requires = ...) and iterated F-racing here
ps = makeParamSet(
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeDiscreteParam("kernel", values = c("vanilladot", "polydot", "rbfdot")),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x,
    requires = quote(kernel == "rbfdot")),
  makeIntegerParam("degree", lower = 2L, upper = 5L,
    requires = quote(kernel == "polydot"))
)
print(ps)
ctrl = makeTuneControlIrace(maxExperiments = 5, nbIterations = 1, minNbSurvival = 1)
rdesc = makeResampleDesc("Holdout")
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)
print(res)
df = as.data.frame(res$opt.path)
print(head(df[, -ncol(df)]))

# include the training set performance as well
rdesc = makeResampleDesc("Holdout", predict = "both")
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps,
  control = ctrl, measures = list(mmce, setAggregation(mmce, train.mean)))
print(res)
df2 = as.data.frame(res$opt.path)
print(head(df2[, -ncol(df2)]))
}
\dontshow{ \} }
\dontshow{ \} }
\dontshow{ \} }
}
\seealso{
\link{generateHyperParsEffectData}

Other tune: 
\code{\link{TuneControl}},
\code{\link{getNestedTuneResultsOptPathDf}()},
\code{\link{getNestedTuneResultsX}()},
\code{\link{getResamplingIndices}()},
\code{\link{getTuneResult}()},
\code{\link{makeModelMultiplexer}()},
\code{\link{makeModelMultiplexerParamSet}()},
\code{\link{makeTuneControlCMAES}()},
\code{\link{makeTuneControlDesign}()},
\code{\link{makeTuneControlGenSA}()},
\code{\link{makeTuneControlGrid}()},
\code{\link{makeTuneControlIrace}()},
\code{\link{makeTuneControlMBO}()},
\code{\link{makeTuneControlRandom}()},
\code{\link{makeTuneWrapper}()},
\code{\link{tuneThreshold}()}
}
\concept{tune}