File: mnp.R

package info (click to toggle)
r-cran-mnp 3.1-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,488 kB
  • sloc: ansic: 930; sh: 13; makefile: 5
file content (370 lines) | stat: -rw-r--r-- 16,982 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#' Fitting the Multinomial Probit Model via Markov chain Monte Carlo
#'
#' \code{mnp} is used to fit (Bayesian) multinomial probit model via Markov
#' chain Monte Carlo.  \code{mnp} can also fit the model with different choice
#' sets for each observation, and complete or partial ordering of all the
#' available alternatives. The computation uses the efficient marginal data
#' augmentation algorithm that is developed by Imai and van Dyk (2005a).
#'
#' To fit the multinomial probit model when only the most preferred choice is
#' observed, use the syntax for the formula, \code{y ~ x1 + x2}, where \code{y}
#' is a factor variable indicating the most preferred choice and \code{x1} and
#' \code{x2} are individual-specific covariates. The interactions of
#' individual-specific variables with each of the choice indicator variables
#' will be fit.
#'
#' To specify choice-specific covariates, use the syntax,
#' \code{choiceX=list(A=cbind(z1, z2), B=cbind(z3, z4), C=cbind(z5, z6))},
#' where \code{A}, \code{B}, and \code{C} represent the choice names of the
#' response variable, and \code{z1} and \code{z2} are each vectors of length
#' \eqn{n} that record the values of the two choice-specific covariates for
#' each individual for choice A, likewise for \code{z3}, \eqn{\ldots},
#' \code{z6}. The corresponding variable names via \code{cXnames=c("price",
#' "quantity")} need to be specified, where \code{price} refers to the
#' coefficient name for \code{z1}, \code{z3}, and \code{z5}, and
#' \code{quantity} refers to that for \code{z2}, \code{z4}, and \code{z6}.
#'
#' If the choice set varies from one observation to another, use the syntax,
#' \code{cbind(y1, y2, y3) ~ x1 + x2}, in the case of a three choice problem,
#' and indicate unavailable alternatives by \code{NA}. If only the most
#' preferred choice is observed, \code{y1}, \code{y2}, and \code{y3} are
#' indicator variables that take on the value one for individuals who prefer
#' that choice and zero otherwise. The last column of the response matrix,
#' \code{y3} in this particular example syntax, is used as the base category.
#'
#' To fit the multinomial probit model when the complete or partial ordering of
#' the available alternatives is recorded, use the same syntax as when the
#' choice set varies (i.e., \code{cbind(y1, y2, y3, y4) ~ x1 + x2}). For each
#' observation, all the available alternatives in the response variables should
#' be numerically ordered in terms of preferences such as \code{1 2 2 3}. Ties
#' are allowed. The missing values in the response variable should be denoted
#' by \code{NA}. The software will impute these missing values using the
#' specified covariates. The resulting uncertainty estimates of the parameters
#' will properly reflect the amount of missing data. For example, we expect the
#' standard errors to be larger when there is more missing data.
#'
#' @aliases mnp MNP
#' @param formula A symbolic description of the model to be fit specifying the
#' response variable and covariates. The formula should not include the
#' choice-specific covariates. Details and specific examples are given below.
#' @param data An optional data frame in which to interpret the variables in
#' \code{formula} and \code{choiceX}. The default is the environment in which
#' \code{mnp} is called.
#' @param choiceX An optional list containing a matrix of choice-specific
#' covariates for each category. Details and examples are provided below.
#' @param cXnames A vector of the names for the choice-specific covariates
#' specified in \code{choiceX}. The details and examples are provided below.
#' @param base The name of the base category. For the standard multinomial
#' probit model, the default is the lowest level of the response variable. For
#' the multinomial probit model with ordered preferences, the default base
#' category is the last column in the matrix of response variables.
#' @param latent logical. If \code{TRUE}, then the latent variable W will be
#' returned. See Imai and van Dyk (2005) for the notation. The default is
#' \code{FALSE}.
#' @param invcdf logical. If \code{TRUE}, then the inverse cdf method is used
#' for truncated normal sampling. If \code{FALSE}, then the rejection sampling
#' method is used. The default is \code{FALSE}.
#' @param trace logical. If \code{TRUE}, then the trace of the variance
#' covariance matrix is set to a constant (here, it is equal to \code{n.dim})
#' instead of setting its first diagonal element to 1.  The former avoids the
#' arbitrariness of fixing one particular diagonal element in order to achieve
#' identification (see Burgette and Nordheim, 2009).
#' @param n.draws A positive integer. The number of MCMC draws. The default is
#' \code{5000}.
#' @param p.var A positive definite matrix. The prior variance of the
#' coefficients.  A scalar input can set the prior variance to the diagonal
#' matrix whose diagonal element is equal to that value. The default is
#' \code{"Inf"}, which represents an improper noninformative prior distribution
#' on the coefficients.
#' @param p.df A positive integer greater than \code{n.dim-1}. The prior
#' degrees of freedom parameter for the covariance matrix. The default is
#' \code{n.dim+1}, which is equal to the total number of alternatives.
#' @param p.scale A positive definite matrix.  When \code{trace = FALSE}, its
#' first diagonal element is set to \code{1} if it is not equal to 1 already.
#' The prior scale matrix for the covariance matrix. A scalar input can be used
#' to set the scale matrix to a diagonal matrix with diagonal elements equal to
#' the scalar input value. The default is \code{1}.
#' @param coef.start A vector. The starting values for the coefficients.  A
#' scalar input sets the starting values for all the coefficients equal to that
#' value.  The default is \code{0}.
#' @param cov.start A positive definite matrix. When \code{trace = FALSE}, its
#' first diagonal element is set to \code{1} if it is not equal to 1 already.
#' The starting values for the covariance matrix. A scalar input can be used to
#' set the starting value to a diagonal matrix with diagonal elements equal to
#' the scalar input value. The default is \code{1}.
#' @param burnin A positive integer. The burnin interval for the Markov chain;
#' i.e., the number of initial Gibbs draws that should not be stored. The
#' default is \code{0}.
#' @param thin A positive integer. The thinning interval for the Markov chain;
#' i.e., the number of Gibbs draws between the recorded values that are
#' skipped. The default is \code{0}.
#' @param verbose logical. If \code{TRUE}, helpful messages along with a
#' progress report of the Gibbs sampling are printed on the screen. The default
#' is \code{FALSE}.
#' @return An object of class \code{mnp} containing the following elements:
#' \item{param}{A matrix of the Gibbs draws for each parameter; i.e., the
#' coefficients and covariance matrix. For the covariance matrix, the elements
#' on or above the diagonal are returned.  }
#' \item{call}{The matched call.}
#' \item{x}{The matrix of covariates.}
#' \item{y}{The vector or matrix of the
#' response variable.}
#' \item{w}{The three dimensional array of the latent
#' variable, W. The first dimension represents the alternatives, and the second
#' dimension indexes the observations. The third dimension represents the Gibbs
#' draws. Note that the latent variable for the base category is set to 0, and
#' therefore omitted from the output.}
#' \item{alt}{The names of alternatives.}
#' \item{n.alt}{The total number of alternatives.}
#' \item{base}{The base
#' category used for fitting.}
#' \item{invcdf}{The value of
#' \code{invcdf}.}
#' \item{p.var}{The prior variance for the coefficients.}
#' \item{p.df}{The prior
#' degrees of freedom parameter for the covariance matrix.}
#' \item{p.scale}{The
#' prior scale matrix for the covariance matrix.}
#' \item{burnin}{The number of
#' initial burnin draws.}
#' \item{thin}{The thinning interval.}
#' @author Kosuke Imai, Department of Government and Department of Statistics, Harvard University
#' \email{imai@@Harvard.Edu}, \url{https://imai.fas.harvard.edu}; David A. van
#' Dyk, Statistics Section, Department of Mathematics, Imperial College London.
#' @seealso \code{coef.mnp}, \code{vcov.mnp}, \code{predict.mnp},
#' \code{summary.mnp};
#' @references Imai, Kosuke and David A. van Dyk. (2005a) \dQuote{A Bayesian
#' Analysis of the Multinomial Probit Model Using the Marginal Data
#' Augmentation,} \emph{Journal of Econometrics}, Vol. 124, No. 2 (February),
#' pp.311-334.
#'
#' Imai, Kosuke and David A. van Dyk. (2005b) \dQuote{MNP: R Package for
#' Fitting the Multinomial Probit Models,} \emph{Journal of Statistical
#' Software}, Vol. 14, No. 3 (May), pp.1-32.
#'
#' Burgette, L.F. and E.V. Nordheim. (2009).  \dQuote{An alternate identifying
#' restriction for the Bayesian multinomial probit model,} \emph{Technical
#' report}, Department of Statistics, University of Wisconsin, Madison.
#' @keywords models
#' @useDynLib MNP, .registration = TRUE
#' @examples
#'
#' ###
#' ### NOTE: this example is not fully analyzed. In particular, the
#' ### convergence has not been assessed. A full analysis of these data
#' ### sets appear in Imai and van Dyk (2005b).
#' ###
#'
#' ## load the detergent data
#' data(detergent)
#' ## run the standard multinomial probit model with intercepts and the price
#' res1 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,
#'                                        Wisk=WiskPrice, EraPlus=EraPlusPrice,
#'                                        Solo=SoloPrice, All=AllPrice),
#'             cXnames = "price", data = detergent, n.draws = 100, burnin = 10,
#'             thin = 3, verbose = TRUE)
#' ## summarize the results
#' summary(res1)
#' ## calculate the quantities of interest for the first 3 observations
#' pre1 <- predict(res1, newdata = detergent[1:3,])
#'
#' ## load the Japanese election data
#' data(japan)
#' ## run the multinomial probit model with ordered preferences
#' res2 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,
#'             verbose = TRUE)
#' ## summarize the results
#' summary(res2)
#' ## calculate the predicted probabilities for the 10th observation
#' ## averaging over 100 additional Monte Carlo draws given each of MCMC draw.
#' pre2 <- predict(res2, newdata = japan[10,], type = "prob", n.draws = 100,
#'                 verbose = TRUE)
#'
#' @export mnp
mnp <- function(formula, data = parent.frame(), choiceX = NULL,
                cXnames = NULL, base = NULL, latent = FALSE,
                invcdf = FALSE, trace = TRUE, n.draws = 5000, p.var = "Inf",
                p.df = n.dim+1, p.scale = 1, coef.start = 0,
                cov.start = 1, burnin = 0, thin = 0, verbose = FALSE) {
  call <- match.call()
  mf <- match.call(expand.dots = FALSE)
  mf$choiceX <- mf$cXnames <- mf$base <- mf$n.draws <- mf$latent <-
    mf$p.var <- mf$p.df <- mf$p.scale <- mf$coef.start <- mf$invcdf <-
      mf$trace <- mf$cov.start <- mf$verbose <- mf$burnin <- mf$thin <- NULL
  mf[[1]] <- as.name("model.frame")
  mf$na.action <- 'na.pass'
  mf <- eval.parent(mf)

  ## fix this parameter
  p.alpha0 <- 1

  ## obtaining Y
  tmp <- ymatrix.mnp(mf, base=base, extra=TRUE)
  Y <- tmp$Y
  MoP <- tmp$MoP
  lev <- tmp$lev
  base <- tmp$base
  p <- tmp$p
  n.dim <- p - 1
  if(verbose)
    cat("\nThe base category is `", base, "'.\n\n", sep="")
  if (p < 3)
    stop("The number of alternatives should be at least 3.")
  if(verbose)
    cat("The total number of alternatives is ", p, ".\n\n", sep="")
  if(verbose) {
    if (trace)
      cat("The trace restriction is used instead of the diagonal restriction.\n\n")
    else
      cat("The diagonal restriction is used instead of the trace restriction.\n\n")
  }

  ### obtaining X
  tmp <- xmatrix.mnp(formula, data=eval.parent(data),
                     choiceX=call$choiceX, cXnames=cXnames,
                     base=base, n.dim=n.dim, lev=lev, MoP=MoP,
                     verbose=verbose, extra=TRUE)
  X <- tmp$X
  coefnames <- tmp$coefnames
  n.cov <- ncol(X) / n.dim

  ## listwise deletion for X
  na.ind <- apply(is.na(X), 1, sum)
  if (ncol(Y) == 1)
    na.ind <- na.ind + is.na(Y)
  Y <- Y[na.ind==0,]
  X <- X[na.ind==0,]
  n.obs <- nrow(X)

  if (verbose) {
    cat("The dimension of beta is ", n.cov, ".\n\n", sep="")
    cat("The number of observations is ", n.obs, ".\n\n", sep="")
    if (sum(na.ind>0)>0) {
      if (sum(na.ind>0)==1)
        cat("The observation ", (1:length(na.ind))[na.ind>0], " is dropped due to missing values.\n\n", sep="")
      else {
        cat("The following ", sum(na.ind>0), " observations are dropped due to missing values:\n", sep="")
        cat((1:length(na.ind))[na.ind>0], "\n\n")
      }
    }
  }

  ## checking the prior for beta
  p.imp <- FALSE
  if (p.var == Inf) {
    p.imp <- TRUE
    p.prec <- diag(0, n.cov)
    if (verbose)
      cat("Improper prior will be used for beta.\n\n")
  }
  else if (is.matrix(p.var)) {
    if (ncol(p.var) != n.cov || nrow(p.var) != n.cov)
      stop("The dimension of `p.var' should be ", n.cov, " x ", n.cov, sep="")
    if (sum(sign(eigen(p.var)$values) < 1) > 0)
      stop("`p.var' must be positive definite.")
    p.prec <- solve(p.var)
  }
  else {
    p.var <- diag(p.var, n.cov)
    p.prec <- solve(p.var)
  }
  p.mean <- rep(0, n.cov)

  ## checking prior for Sigma
  p.df <- eval(p.df)
  if (length(p.df) > 1)
    stop("`p.df' must be a positive integer.")
  if (p.df < n.dim)
    stop(paste("`p.df' must be at least ", n.dim, ".", sep=""))
  if (abs(as.integer(p.df) - p.df) > 0)
    stop("`p.df' must be a positive integer.")
  if (!is.matrix(p.scale))
    p.scale <- diag(p.scale, n.dim)
  if (ncol(p.scale) != n.dim || nrow(p.scale) != n.dim)
    stop("`p.scale' must be ", n.dim, " x ", n.dim, sep="")
  if (sum(sign(eigen(p.scale)$values) < 1) > 0)
    stop("`p.scale' must be positive definite.")
  else if ((trace == FALSE) & (p.scale[1,1] != 1)) {
    p.scale[1,1] <- 1
    warning("p.scale[1,1] will be set to 1.")
  }
  Signames <- NULL
  for(j in 1:n.dim)
    for(k in 1:n.dim)
      if (j<=k)
        Signames <- c(Signames, paste(if(MoP) lev[j] else lev[j+1],
                                      ":", if(MoP) lev[k] else lev[k+1], sep=""))

  ## checking starting values
  if (length(coef.start) == 1)
    coef.start <- rep(coef.start, n.cov)
  else if (length(coef.start) != n.cov)
    stop(paste("The dimenstion of `coef.start' must be  ",
               n.cov, ".", sep=""))
  if (!is.matrix(cov.start)) {
    cov.start <- diag(n.dim)*cov.start
    if (!trace)
      cov.start[1,1] <- 1
  }
  else if (ncol(cov.start) != n.dim || nrow(cov.start) != n.dim)
    stop("The dimension of `cov.start' must be ", n.dim, " x ", n.dim, sep="")
  else if (sum(sign(eigen(cov.start)$values) < 1) > 0)
    stop("`cov.start' must be a positive definite matrix.")
  else if ((trace == FALSE) & (cov.start[1,1] != 1)) {
    cov.start[1,1] <- 1
    warning("cov.start[1,1] will be set to 1.")
  }

  ## checking thinnig and burnin intervals
  if (burnin < 0)
    stop("`burnin' should be a non-negative integer.")
  if (thin < 0)
    stop("`thin' should be a non-negative integer.")
  keep <- thin + 1

  ## running the algorithm
  if (latent)
    n.par <- n.cov + n.dim*(n.dim+1)/2 + n.dim*n.obs
  else
    n.par <- n.cov + n.dim*(n.dim+1)/2
  if(verbose)
    cat("Starting Gibbs sampler...\n")
  # recoding NA into -1
  Y[is.na(Y)] <- -1

  param <- .C("cMNPgibbs", as.integer(n.dim),
              as.integer(n.cov), as.integer(n.obs), as.integer(n.draws),
              as.double(p.mean), as.double(p.prec), as.integer(p.df),
              as.double(p.scale*p.alpha0), as.double(X), as.integer(Y),
              as.double(coef.start), as.double(cov.start),
              as.integer(p.imp), as.integer(invcdf),
              as.integer(burnin), as.integer(keep), as.integer(trace),
              as.integer(verbose), as.integer(MoP), as.integer(latent),
              pdStore = double(n.par*floor((n.draws-burnin)/keep)),
              PACKAGE="MNP")$pdStore
  param <- matrix(param, ncol = n.par,
                  nrow = floor((n.draws-burnin)/keep), byrow=TRUE)
  if (latent) {
    W <- array(as.vector(t(param[,(n.par-n.dim*n.obs+1):n.par])),
               dim = c(n.dim, n.obs, floor((n.draws-burnin)/keep)),
               dimnames = list(lev[!(lev %in% base)], rownames(Y), NULL))
    param <- param[,1:(n.par-n.dim*n.obs)]
    }
  else
    W <- NULL
  colnames(param) <- c(coefnames, Signames)

  ##recoding -1 back into NA
  Y[Y==-1] <- NA

  ## returning the object
  res <- list(param = param, x = X, y = Y, w = W, call = call, alt = lev,
              n.alt = p, base = base, invcdf = invcdf, trace = trace,
              p.mean = if(p.imp) NULL else p.mean, p.var = p.var,
              p.df = p.df, p.scale = p.scale, burnin = burnin, thin = thin)
  class(res) <- "mnp"
  return(res)
}