1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
#' Fitting the Multinomial Probit Model via Markov chain Monte Carlo
#'
#' \code{mnp} is used to fit (Bayesian) multinomial probit model via Markov
#' chain Monte Carlo. \code{mnp} can also fit the model with different choice
#' sets for each observation, and complete or partial ordering of all the
#' available alternatives. The computation uses the efficient marginal data
#' augmentation algorithm that is developed by Imai and van Dyk (2005a).
#'
#' To fit the multinomial probit model when only the most preferred choice is
#' observed, use the syntax for the formula, \code{y ~ x1 + x2}, where \code{y}
#' is a factor variable indicating the most preferred choice and \code{x1} and
#' \code{x2} are individual-specific covariates. The interactions of
#' individual-specific variables with each of the choice indicator variables
#' will be fit.
#'
#' To specify choice-specific covariates, use the syntax,
#' \code{choiceX=list(A=cbind(z1, z2), B=cbind(z3, z4), C=cbind(z5, z6))},
#' where \code{A}, \code{B}, and \code{C} represent the choice names of the
#' response variable, and \code{z1} and \code{z2} are each vectors of length
#' \eqn{n} that record the values of the two choice-specific covariates for
#' each individual for choice A, likewise for \code{z3}, \eqn{\ldots},
#' \code{z6}. The corresponding variable names via \code{cXnames=c("price",
#' "quantity")} need to be specified, where \code{price} refers to the
#' coefficient name for \code{z1}, \code{z3}, and \code{z5}, and
#' \code{quantity} refers to that for \code{z2}, \code{z4}, and \code{z6}.
#'
#' If the choice set varies from one observation to another, use the syntax,
#' \code{cbind(y1, y2, y3) ~ x1 + x2}, in the case of a three choice problem,
#' and indicate unavailable alternatives by \code{NA}. If only the most
#' preferred choice is observed, \code{y1}, \code{y2}, and \code{y3} are
#' indicator variables that take on the value one for individuals who prefer
#' that choice and zero otherwise. The last column of the response matrix,
#' \code{y3} in this particular example syntax, is used as the base category.
#'
#' To fit the multinomial probit model when the complete or partial ordering of
#' the available alternatives is recorded, use the same syntax as when the
#' choice set varies (i.e., \code{cbind(y1, y2, y3, y4) ~ x1 + x2}). For each
#' observation, all the available alternatives in the response variables should
#' be numerically ordered in terms of preferences such as \code{1 2 2 3}. Ties
#' are allowed. The missing values in the response variable should be denoted
#' by \code{NA}. The software will impute these missing values using the
#' specified covariates. The resulting uncertainty estimates of the parameters
#' will properly reflect the amount of missing data. For example, we expect the
#' standard errors to be larger when there is more missing data.
#'
#' @aliases mnp MNP
#' @param formula A symbolic description of the model to be fit specifying the
#' response variable and covariates. The formula should not include the
#' choice-specific covariates. Details and specific examples are given below.
#' @param data An optional data frame in which to interpret the variables in
#' \code{formula} and \code{choiceX}. The default is the environment in which
#' \code{mnp} is called.
#' @param choiceX An optional list containing a matrix of choice-specific
#' covariates for each category. Details and examples are provided below.
#' @param cXnames A vector of the names for the choice-specific covariates
#' specified in \code{choiceX}. The details and examples are provided below.
#' @param base The name of the base category. For the standard multinomial
#' probit model, the default is the lowest level of the response variable. For
#' the multinomial probit model with ordered preferences, the default base
#' category is the last column in the matrix of response variables.
#' @param latent logical. If \code{TRUE}, then the latent variable W will be
#' returned. See Imai and van Dyk (2005) for the notation. The default is
#' \code{FALSE}.
#' @param invcdf logical. If \code{TRUE}, then the inverse cdf method is used
#' for truncated normal sampling. If \code{FALSE}, then the rejection sampling
#' method is used. The default is \code{FALSE}.
#' @param trace logical. If \code{TRUE}, then the trace of the variance
#' covariance matrix is set to a constant (here, it is equal to \code{n.dim})
#' instead of setting its first diagonal element to 1. The former avoids the
#' arbitrariness of fixing one particular diagonal element in order to achieve
#' identification (see Burgette and Nordheim, 2009).
#' @param n.draws A positive integer. The number of MCMC draws. The default is
#' \code{5000}.
#' @param p.var A positive definite matrix. The prior variance of the
#' coefficients. A scalar input can set the prior variance to the diagonal
#' matrix whose diagonal element is equal to that value. The default is
#' \code{"Inf"}, which represents an improper noninformative prior distribution
#' on the coefficients.
#' @param p.df A positive integer greater than \code{n.dim-1}. The prior
#' degrees of freedom parameter for the covariance matrix. The default is
#' \code{n.dim+1}, which is equal to the total number of alternatives.
#' @param p.scale A positive definite matrix. When \code{trace = FALSE}, its
#' first diagonal element is set to \code{1} if it is not equal to 1 already.
#' The prior scale matrix for the covariance matrix. A scalar input can be used
#' to set the scale matrix to a diagonal matrix with diagonal elements equal to
#' the scalar input value. The default is \code{1}.
#' @param coef.start A vector. The starting values for the coefficients. A
#' scalar input sets the starting values for all the coefficients equal to that
#' value. The default is \code{0}.
#' @param cov.start A positive definite matrix. When \code{trace = FALSE}, its
#' first diagonal element is set to \code{1} if it is not equal to 1 already.
#' The starting values for the covariance matrix. A scalar input can be used to
#' set the starting value to a diagonal matrix with diagonal elements equal to
#' the scalar input value. The default is \code{1}.
#' @param burnin A positive integer. The burnin interval for the Markov chain;
#' i.e., the number of initial Gibbs draws that should not be stored. The
#' default is \code{0}.
#' @param thin A positive integer. The thinning interval for the Markov chain;
#' i.e., the number of Gibbs draws between the recorded values that are
#' skipped. The default is \code{0}.
#' @param verbose logical. If \code{TRUE}, helpful messages along with a
#' progress report of the Gibbs sampling are printed on the screen. The default
#' is \code{FALSE}.
#' @return An object of class \code{mnp} containing the following elements:
#' \item{param}{A matrix of the Gibbs draws for each parameter; i.e., the
#' coefficients and covariance matrix. For the covariance matrix, the elements
#' on or above the diagonal are returned. }
#' \item{call}{The matched call.}
#' \item{x}{The matrix of covariates.}
#' \item{y}{The vector or matrix of the
#' response variable.}
#' \item{w}{The three dimensional array of the latent
#' variable, W. The first dimension represents the alternatives, and the second
#' dimension indexes the observations. The third dimension represents the Gibbs
#' draws. Note that the latent variable for the base category is set to 0, and
#' therefore omitted from the output.}
#' \item{alt}{The names of alternatives.}
#' \item{n.alt}{The total number of alternatives.}
#' \item{base}{The base
#' category used for fitting.}
#' \item{invcdf}{The value of
#' \code{invcdf}.}
#' \item{p.var}{The prior variance for the coefficients.}
#' \item{p.df}{The prior
#' degrees of freedom parameter for the covariance matrix.}
#' \item{p.scale}{The
#' prior scale matrix for the covariance matrix.}
#' \item{burnin}{The number of
#' initial burnin draws.}
#' \item{thin}{The thinning interval.}
#' @author Kosuke Imai, Department of Government and Department of Statistics, Harvard University
#' \email{imai@@Harvard.Edu}, \url{https://imai.fas.harvard.edu}; David A. van
#' Dyk, Statistics Section, Department of Mathematics, Imperial College London.
#' @seealso \code{coef.mnp}, \code{vcov.mnp}, \code{predict.mnp},
#' \code{summary.mnp};
#' @references Imai, Kosuke and David A. van Dyk. (2005a) \dQuote{A Bayesian
#' Analysis of the Multinomial Probit Model Using the Marginal Data
#' Augmentation,} \emph{Journal of Econometrics}, Vol. 124, No. 2 (February),
#' pp.311-334.
#'
#' Imai, Kosuke and David A. van Dyk. (2005b) \dQuote{MNP: R Package for
#' Fitting the Multinomial Probit Models,} \emph{Journal of Statistical
#' Software}, Vol. 14, No. 3 (May), pp.1-32.
#'
#' Burgette, L.F. and E.V. Nordheim. (2009). \dQuote{An alternate identifying
#' restriction for the Bayesian multinomial probit model,} \emph{Technical
#' report}, Department of Statistics, University of Wisconsin, Madison.
#' @keywords models
#' @useDynLib MNP, .registration = TRUE
#' @examples
#'
#' ###
#' ### NOTE: this example is not fully analyzed. In particular, the
#' ### convergence has not been assessed. A full analysis of these data
#' ### sets appear in Imai and van Dyk (2005b).
#' ###
#'
#' ## load the detergent data
#' data(detergent)
#' ## run the standard multinomial probit model with intercepts and the price
#' res1 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,
#' Wisk=WiskPrice, EraPlus=EraPlusPrice,
#' Solo=SoloPrice, All=AllPrice),
#' cXnames = "price", data = detergent, n.draws = 100, burnin = 10,
#' thin = 3, verbose = TRUE)
#' ## summarize the results
#' summary(res1)
#' ## calculate the quantities of interest for the first 3 observations
#' pre1 <- predict(res1, newdata = detergent[1:3,])
#'
#' ## load the Japanese election data
#' data(japan)
#' ## run the multinomial probit model with ordered preferences
#' res2 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,
#' verbose = TRUE)
#' ## summarize the results
#' summary(res2)
#' ## calculate the predicted probabilities for the 10th observation
#' ## averaging over 100 additional Monte Carlo draws given each of MCMC draw.
#' pre2 <- predict(res2, newdata = japan[10,], type = "prob", n.draws = 100,
#' verbose = TRUE)
#'
#' @export mnp
mnp <- function(formula, data = parent.frame(), choiceX = NULL,
cXnames = NULL, base = NULL, latent = FALSE,
invcdf = FALSE, trace = TRUE, n.draws = 5000, p.var = "Inf",
p.df = n.dim+1, p.scale = 1, coef.start = 0,
cov.start = 1, burnin = 0, thin = 0, verbose = FALSE) {
call <- match.call()
mf <- match.call(expand.dots = FALSE)
mf$choiceX <- mf$cXnames <- mf$base <- mf$n.draws <- mf$latent <-
mf$p.var <- mf$p.df <- mf$p.scale <- mf$coef.start <- mf$invcdf <-
mf$trace <- mf$cov.start <- mf$verbose <- mf$burnin <- mf$thin <- NULL
mf[[1]] <- as.name("model.frame")
mf$na.action <- 'na.pass'
mf <- eval.parent(mf)
## fix this parameter
p.alpha0 <- 1
## obtaining Y
tmp <- ymatrix.mnp(mf, base=base, extra=TRUE)
Y <- tmp$Y
MoP <- tmp$MoP
lev <- tmp$lev
base <- tmp$base
p <- tmp$p
n.dim <- p - 1
if(verbose)
cat("\nThe base category is `", base, "'.\n\n", sep="")
if (p < 3)
stop("The number of alternatives should be at least 3.")
if(verbose)
cat("The total number of alternatives is ", p, ".\n\n", sep="")
if(verbose) {
if (trace)
cat("The trace restriction is used instead of the diagonal restriction.\n\n")
else
cat("The diagonal restriction is used instead of the trace restriction.\n\n")
}
### obtaining X
tmp <- xmatrix.mnp(formula, data=eval.parent(data),
choiceX=call$choiceX, cXnames=cXnames,
base=base, n.dim=n.dim, lev=lev, MoP=MoP,
verbose=verbose, extra=TRUE)
X <- tmp$X
coefnames <- tmp$coefnames
n.cov <- ncol(X) / n.dim
## listwise deletion for X
na.ind <- apply(is.na(X), 1, sum)
if (ncol(Y) == 1)
na.ind <- na.ind + is.na(Y)
Y <- Y[na.ind==0,]
X <- X[na.ind==0,]
n.obs <- nrow(X)
if (verbose) {
cat("The dimension of beta is ", n.cov, ".\n\n", sep="")
cat("The number of observations is ", n.obs, ".\n\n", sep="")
if (sum(na.ind>0)>0) {
if (sum(na.ind>0)==1)
cat("The observation ", (1:length(na.ind))[na.ind>0], " is dropped due to missing values.\n\n", sep="")
else {
cat("The following ", sum(na.ind>0), " observations are dropped due to missing values:\n", sep="")
cat((1:length(na.ind))[na.ind>0], "\n\n")
}
}
}
## checking the prior for beta
p.imp <- FALSE
if (p.var == Inf) {
p.imp <- TRUE
p.prec <- diag(0, n.cov)
if (verbose)
cat("Improper prior will be used for beta.\n\n")
}
else if (is.matrix(p.var)) {
if (ncol(p.var) != n.cov || nrow(p.var) != n.cov)
stop("The dimension of `p.var' should be ", n.cov, " x ", n.cov, sep="")
if (sum(sign(eigen(p.var)$values) < 1) > 0)
stop("`p.var' must be positive definite.")
p.prec <- solve(p.var)
}
else {
p.var <- diag(p.var, n.cov)
p.prec <- solve(p.var)
}
p.mean <- rep(0, n.cov)
## checking prior for Sigma
p.df <- eval(p.df)
if (length(p.df) > 1)
stop("`p.df' must be a positive integer.")
if (p.df < n.dim)
stop(paste("`p.df' must be at least ", n.dim, ".", sep=""))
if (abs(as.integer(p.df) - p.df) > 0)
stop("`p.df' must be a positive integer.")
if (!is.matrix(p.scale))
p.scale <- diag(p.scale, n.dim)
if (ncol(p.scale) != n.dim || nrow(p.scale) != n.dim)
stop("`p.scale' must be ", n.dim, " x ", n.dim, sep="")
if (sum(sign(eigen(p.scale)$values) < 1) > 0)
stop("`p.scale' must be positive definite.")
else if ((trace == FALSE) & (p.scale[1,1] != 1)) {
p.scale[1,1] <- 1
warning("p.scale[1,1] will be set to 1.")
}
Signames <- NULL
for(j in 1:n.dim)
for(k in 1:n.dim)
if (j<=k)
Signames <- c(Signames, paste(if(MoP) lev[j] else lev[j+1],
":", if(MoP) lev[k] else lev[k+1], sep=""))
## checking starting values
if (length(coef.start) == 1)
coef.start <- rep(coef.start, n.cov)
else if (length(coef.start) != n.cov)
stop(paste("The dimenstion of `coef.start' must be ",
n.cov, ".", sep=""))
if (!is.matrix(cov.start)) {
cov.start <- diag(n.dim)*cov.start
if (!trace)
cov.start[1,1] <- 1
}
else if (ncol(cov.start) != n.dim || nrow(cov.start) != n.dim)
stop("The dimension of `cov.start' must be ", n.dim, " x ", n.dim, sep="")
else if (sum(sign(eigen(cov.start)$values) < 1) > 0)
stop("`cov.start' must be a positive definite matrix.")
else if ((trace == FALSE) & (cov.start[1,1] != 1)) {
cov.start[1,1] <- 1
warning("cov.start[1,1] will be set to 1.")
}
## checking thinnig and burnin intervals
if (burnin < 0)
stop("`burnin' should be a non-negative integer.")
if (thin < 0)
stop("`thin' should be a non-negative integer.")
keep <- thin + 1
## running the algorithm
if (latent)
n.par <- n.cov + n.dim*(n.dim+1)/2 + n.dim*n.obs
else
n.par <- n.cov + n.dim*(n.dim+1)/2
if(verbose)
cat("Starting Gibbs sampler...\n")
# recoding NA into -1
Y[is.na(Y)] <- -1
param <- .C("cMNPgibbs", as.integer(n.dim),
as.integer(n.cov), as.integer(n.obs), as.integer(n.draws),
as.double(p.mean), as.double(p.prec), as.integer(p.df),
as.double(p.scale*p.alpha0), as.double(X), as.integer(Y),
as.double(coef.start), as.double(cov.start),
as.integer(p.imp), as.integer(invcdf),
as.integer(burnin), as.integer(keep), as.integer(trace),
as.integer(verbose), as.integer(MoP), as.integer(latent),
pdStore = double(n.par*floor((n.draws-burnin)/keep)),
PACKAGE="MNP")$pdStore
param <- matrix(param, ncol = n.par,
nrow = floor((n.draws-burnin)/keep), byrow=TRUE)
if (latent) {
W <- array(as.vector(t(param[,(n.par-n.dim*n.obs+1):n.par])),
dim = c(n.dim, n.obs, floor((n.draws-burnin)/keep)),
dimnames = list(lev[!(lev %in% base)], rownames(Y), NULL))
param <- param[,1:(n.par-n.dim*n.obs)]
}
else
W <- NULL
colnames(param) <- c(coefnames, Signames)
##recoding -1 back into NA
Y[Y==-1] <- NA
## returning the object
res <- list(param = param, x = X, y = Y, w = W, call = call, alt = lev,
n.alt = p, base = base, invcdf = invcdf, trace = trace,
p.mean = if(p.imp) NULL else p.mean, p.var = p.var,
p.df = p.df, p.scale = p.scale, burnin = burnin, thin = thin)
class(res) <- "mnp"
return(res)
}
|