1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#' @title
#' Half sample mode estimator
#'
#' @description
#' This function computes the Robertson-Cryer mode estimator
#' described in Robertson and Cryer (1974),
#' also called half sample mode (if \code{bw = 1/2})
#' or fraction sample mode (for some other \code{bw}) by Bickel (2006).
#'
#' @details
#' The modal interval, i.e. the shortest interval among
#' intervals containing \code{k+1} observations, is computed
#' iteratively, until only one value is found, the mode estimate.
#' At each step \eqn{i}{i}, one takes \code{k = ceiling(bw*n) - 1},
#' where \code{n} is the length of the modal interval computed
#' at step \eqn{i-}{i-}\code{1}.
#' If \code{bw} is of class \code{"function"},
#' then \code{k = ceiling(bw(n)) - 1} instead.
#'
#' @note
#' The user may call \code{hsm} through
#' \code{mlv(x, method = "hsm", ...)}.
#'
#' @references
#' \itemize{
#' \item Robertson T. and Cryer J.D. (1974).
#' An iterative procedure for estimating the mode.
#' \emph{J. Amer. Statist. Assoc.}, \bold{69}(348):1012-1016.
#'
#' \item Bickel D.R. and Fruehwirth R. (2006).
#' On a Fast, Robust Estimator of the Mode: Comparisons to
#' Other Robust Estimators with Applications.
#' \emph{Computational Statistics and Data Analysis}, \bold{50}(12):3500-3530.
#' }
#'
#' @param x
#' numeric. Vector of observations.
#'
#' @param bw
#' numeric or function.
#' The bandwidth to be used. Should belong to (0, 1].
#'
#' @param k
#' numeric. See 'Details'.
#'
#' @param tie.action
#' character. The action to take if a tie is encountered.
#'
#' @param tie.limit
#' numeric. A limit deciding whether or not a warning
#' is given when a tie is encountered.
#'
#' @param ...
#' Additional arguments.
#'
#' @return
#' A numeric value is returned, the mode estimate.
#'
#' @author
#' D.R. Bickel for the original code,
#' P. Poncet for the slight modifications introduced.
#'
#' @seealso
#' \code{\link[modeest]{mlv}} for general mode estimation;
#' \code{\link[modeest]{venter}} for the Venter mode estimate.
#'
#' @export
#' @aliases HSM
#'
#' @examples
#' # Unimodal distribution
#' x <- rweibull(10000, shape = 3, scale = 0.9)
#'
#' ## True mode
#' weibullMode(shape = 3, scale = 0.9)
#'
#' ## Estimate of the mode
#' bandwidth <- function(n, alpha) {1/n^alpha}
#' hsm(x, bw = bandwidth, alpha = 2)
#' mlv(x, method = "hsm", bw = bandwidth, alpha = 2)
#'
hsm <-
function(x,
bw = NULL,
k,
tie.action = "mean",
tie.limit = 0.05,
...)
{
if (!missing(k) && is.null(bw)) {
bw <- (k + 1)/length(x)
} else if (missing(k) && is.null(bw)) {
bw <- 1/2
}
if (is.numeric(bw)) {
if (bw <= 0 || bw > 1) {
stop("argument 'bw' must belong to (0, 1]",
call. = FALSE)
}
}
y <- sort(x)
while (length(y) >= 4) {
ny <- length(y)
if (is.function(bw)) {
k <- ceiling(bw(ny, ...)*ny) - 1
} else {
k <- ceiling(bw*ny) - 1
}
inf <- y[1:(ny-k)]
sup <- y[(k+1):ny]
diffs <- sup - inf
i <- which(diffs==min(diffs))
## Ties?
if(length(i) > 1) i <- .deal.ties(ny, i, tie.action, tie.limit)
if (diffs[i]==0) {
y <- y[i]
} else {
y <- y[i:(i+k)]
}
#y <- ifelse(diffs[i]==0, y[i], y[i:(i+k)])
}
if (length(y) == 3) {
z <- 2*y[2] - y[1] - y[3]
M <- switch(as.character(sign(z)),
"-1" = mean(y[1:2]),
"1" = mean(y[2:3]),
"0" = y[2])
} else {
M <- mean(y)
}
M
}
#! Recursive estimator
#mlv.hsm.rec <-
#function(x, # sample
# bw, # fraction of the observations to consider
# tie.action = "mean",
# tie.limit = 0.05)
#{
# if (missing(bw)) bw <- 1/2
# if (bw <= 0 || bw > 1) stop("Argument 'bw' must belong to (0, 1].")
# aux <-
# function(y, ny, k)
# {
# if (ny == 3) {
# z <- 2*y[2] - y[1] - y[3]
# return(switch(as.character(sign(z)), "-1" = mean(y[1:2]), "1" = mean(y[2:3]), "0" = y[2]))
# } else {
# if (ny < 3) {
# return(mean(y))
# } else {
# diffs <- y[(k+1):ny] - y[1:(ny-k)]
# i <- which(diffs==min(diffs))
# if(length(i) > 1) i <- .deal.ties(ny, i, tie.action, tie.limit)
# y <- ifelse(diffs[i]==0, y[i], y[i:(i+k)])
# ny <- length(y)
# Recall(y, ny, ceiling(ny*bw)-1)
# }
# }
# }
## Output
# nx <- length(x)
# return(aux(sort(x), nx, ceiling(bw*nx)-1))
#}
|