1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
# TODO: packages 'ks' et 'kedd', notamment pour les kernel density derivative estimates
#' @title
#' Estimation of the Mode(s) or Most Likely Value(s)
#'
#' @description
#' \code{mlv} is a generic function for estimating the mode of a univariate distribution.
#' Different estimates (or methods) are provided:
#' \itemize{
#' \item \code{\link{mfv}}, which returns the most frequent value(s) in a given numerical vector,
#' \item the \code{\link{Lientz}} mode estimator, which is the value minimizing the Lientz function estimate,
#' \item the Chernoff mode estimator, also called \code{\link{naive}} mode estimator,
#' which is defined as the center of the interval of given length containing the most observations,
#' \item the \code{\link{Venter}} mode estimator, including the \code{\link{shorth}}, i.e. the midpoint of the modal interval,
#' \item the \code{\link{Grenander}} mode estimator,
#' \item the half sample mode (\code{\link{HSM}}) and the half range mode (\code{\link{HRM}}), which are iterative versions of the Venter mode estimator,
#' \item \code{\link{Parzen}}'s kernel mode estimator, which is the value maximizing the kernel density estimate,
#' \item the \code{\link{Tsybakov}} mode estimator, based on a gradient-like recursive algorithm,
#' \item the \code{\link{Asselin}} de Beauville mode estimator, based on a algorithm detecting chains and holes in the sample,
#' \item the \code{\link{Vieu}} mode estimator,
#' \item the \code{\link{meanshift}} mode estimator.
#' }
#'
#' \code{mlv} can also be used to compute the mode of a given distribution, with \code{mlv.character}.
#'
#' @details
#' For the default method of \code{mlv}, available methods are \code{"lientz"},
#' \code{"naive"}, \code{"venter"},
#' \code{"grenander"}, \code{"hsm"}, \code{"parzen"},
#' \code{"tsybakov"}, \code{"asselin"}, and \code{"meanshift"}.
#' See the description above and the associated links.
#'
#' If \code{x} is of class \code{"character"} (with length > 1),
#' \code{"factor"}, or \code{"integer"}, then the most frequent value found in
#' \code{x} is returned using \code{\link[statip]{mfv}} from package
#' \pkg{statip}.
#'
#' If \code{x} is of class \code{"character"} (with length 1),
#' \code{x} should be one of \code{"beta"}, \code{"cauchy"}, \code{"gev"}, etc.
#' i.e. a character for which a function \code{*Mode} exists
#' (for instance \code{betaMode}, \code{cauchyMode}, etc.).
#' See \code{\link[modeest]{distrMode}} for the available functions.
#' The mode of the corresponding distribution is returned.
#'
# #' If \code{x} is of class \code{"density"}, the value where the density is
# #' maximised is returned.
# #'
#' If \code{x} is of class \code{mlv.lientz}, see \code{\link[modeest]{Lientz}}
#' for more details.
#'
#' @references
#' See the references on mode estimation on the \code{\link[modeest]{modeest-package}}'s page.
#'
#' @param x
#' numeric (vector of observations), or an object of class \code{"factor"}, \code{"integer"}, etc.
#'
#' @param bw
#' numeric. The bandwidth to be used.
#' This may have different meanings regarding the \code{method} used.
#'
#' @param method
#' character. One of the methods available for computing the mode estimate. See 'Details'.
#'
#' @param na.rm
#' logical. Should missing values be removed?
#'
# #' @param all
# #' logical.
# #'
# #' @param abc
# #' logical. If \code{FALSE} (the default), the estimate of the density function
# #' is maximised using \code{\link{optim}}.
# #'
#' @param ...
#' Further arguments to be passed to the function called for computation.
#'
#' @return
#' A vector of the same type as \code{x}.
#' Be aware that the length of this vector can be \code{> 1}.
#'
#' @seealso
#' \code{\link[statip]{mfv}},
#' \code{\link[modeest]{parzen}},
#' \code{\link[modeest]{venter}},
#' \code{\link[modeest]{meanshift}},
#' \code{\link[modeest]{grenander}},
# #' \code{\link[modeest]{hrm}},
#' \code{\link[modeest]{hsm}},
#' \code{\link[modeest]{lientz}},
#' \code{\link[modeest]{naive}},
#' \code{\link[modeest]{tsybakov}},
#' \code{\link[modeest]{skewness}}
#'
#' @export
#'
#' @examples
#' # Unimodal distribution
#' x <- rbeta(1000,23,4)
#'
#' ## True mode
#' betaMode(23, 4)
#' # or
#' mlv("beta", shape1 = 23, shape2 = 4)
#'
#' ## Be aware of this behaviour:
#' mlv("norm") # returns 0, the mode of the standard normal distribution
#' mlv("normal") # returns 0 again, since "normal" is matched with "norm"
#' mlv("abnormal") # returns "abnormal", since the input vector "abrnormal"
#' # is not recognized as a distribution name, hence is taken as a character
#' # vector from which the most frequent value is requested.
#'
#' ## Estimate of the mode
#' mlv(x, method = "lientz", bw = 0.2)
#' mlv(x, method = "naive", bw = 1/3)
#' mlv(x, method = "venter", type = "shorth")
#' mlv(x, method = "grenander", p = 4)
# #' mlv(x, method = "hrm", bw = 0.3)
#' mlv(x, method = "hsm")
#' mlv(x, method = "parzen", kernel = "gaussian")
#' mlv(x, method = "tsybakov", kernel = "gaussian")
#' mlv(x, method = "asselin", bw = 2/3)
#' mlv(x, method = "vieu")
#' mlv(x, method = "meanshift")
#'
mlv <-
function(x,
...)
{
UseMethod("mlv")
}
#' @importFrom statip name2distr
#' @export
#' @rdname mlv
#'
mlv.character <-
function(x,
na.rm = FALSE,
...)
{
stopifnot(is.character(x))
if (length(x)==1L && statip::name2distr(x) %in% .distributionsList()) {
distrMode(x, ...)
} else {
mfv(x, na_rm = na.rm)
}
}
#' @export
#' @rdname mlv
#'
mlv.factor <-
function(x,
na.rm = FALSE,
...)
{
stopifnot(is.factor(x))
mfv(x, na_rm = na.rm)
}
#' @export
#' @rdname mlv
#'
mlv.logical <-
function(x,
na.rm = FALSE,
...)
{
stopifnot(is.logical(x))
mfv(x, na_rm = na.rm)
}
#' @export
#' @rdname mlv
#'
mlv.integer <-
function(x,
na.rm = FALSE,
...)
{
stopifnot(is.integer(x))
mfv(x, na_rm = na.rm)
}
# #' @importFrom bazar is_wholenumber
#' @export
#' @rdname mlv
#'
mlv.default <-
function(x,
bw = NULL,
method,
na.rm = FALSE,
...)
{
stopifnot(is.numeric(x))
x <- as.vector(x)
#test <- bazar::is_wholenumber(x)
#if (is.na(test) || test) {
# return(mfv(as.integer(round(x)), na_rm = na.rm))
#}
x.na <- is.na(x)
if (any(x.na)) {
if (na.rm) {
x <- x[!x.na]
} else {
stop("argument 'x' contains missing values",
call. = FALSE)
}
}
x.finite <- is.finite(x)
if (any(!x.finite)) {
x <- x[x.finite]
}
if (missing(method)) {
warning("argument 'method' is missing. Data are supposed to be continuous.
Default method 'shorth' is used",
call. = FALSE)
method <- "shorth"
#} else if (tolower(method) == "mfv") {
# stop("incorrect 'method' argument")
} else if (pmatch(tolower(method), c("density", "kernel"), nomatch = 0)) {
method <- "parzen"
} else method <- match.arg(tolower(method), .methodsList())
if (method == "lientz") method <- "mlv.lientz"
do.call(method, list(x = x, bw = bw, ...)) # possibly length > 1
#mean(theta)
}
# #' @export
# #' @rdname mlv
# #'
# mlv.density <-
# function(x,
# all = TRUE,
# abc = FALSE,
# ...)
# {
# # TODO: A MODIFIER EN MEME TEMPS QUE 'parzen'
#
# if (!inherits(x, "density")) stop("argument 'x' must inherit from class 'density'")
#
# y <- x$y
# x <- x$x
#
# den.s <- stats::smooth.spline(x, y, all.knots=TRUE, spar=spar)
# s.1 <- stats::predict(den.s, den.s$x, deriv = 1)
# s.0 <- stats::predict(den.s, den.s$x, deriv = 0)
#
# den.sign <- sign(s.1$y)
# b <- rle(den.sign)$values
# nmodes <- length(b)/2
# #if (nmodes > 10) { nmodes <- 10 }
# if (is.na(nmodes)) { nmodes <- 0 }
#
# a <- c(1,1+which(diff(den.sign)!=0))
# df <- data.frame(a,b)
# df <- df[which(df$b %in% -1),]
# modes <- s.1$x[df$a]
# density <- s.0$y[df$a]
# df2 <- data.frame(modes,density)
# df2 <- df2[with(df2, order(-density)), ] # ordered by density
# df2
#
#
# #-------------------
#
# idx <- y == max(y)
# M <- x[idx]
#
# if (all) {
# yy <- c(0, y, 0)
# ny <- length(yy)
# idx <- (yy[2:(ny - 1)] > yy[1:(ny - 2)]) & (yy[2:(ny - 1)] > yy[3:ny])
# M <- unique(c(x[idx], M))
# }
#
# M
# }
#' @export
#' @rdname mlv
#'
mlv1 <-
function(x,
...)
{
mlv(x, ...)[[1L]]
}
|