File: lientz.Rd

package info (click to toggle)
r-cran-modeest 2.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 280 kB
  • sloc: makefile: 2
file content (113 lines) | stat: -rw-r--r-- 3,570 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/lientz.R
\name{lientz}
\alias{lientz}
\alias{Lientz}
\alias{plot.lientz}
\alias{print.lientz}
\alias{mlv.lientz}
\title{The empirical Lientz function and the Lientz mode estimator}
\usage{
lientz(x, bw = NULL)

\method{plot}{lientz}(x, zoom = FALSE, ...)

\method{print}{lientz}(x, digits = NULL, ...)

\method{mlv}{lientz}(x, bw = NULL, abc = FALSE, par = shorth(x), optim.method = "BFGS", ...)
}
\arguments{
\item{x}{numeric (vector of observations) or an object of class \code{"lientz"}.}

\item{bw}{numeric. The smoothing bandwidth to be used. 
Should belong to (0, 1). Parameter 'beta' in Lientz (1970) function.}

\item{zoom}{logical. If \code{TRUE}, one can zoom on the graph created.}

\item{...}{if \code{abc = FALSE}, further arguments to be passed to 
\code{\link[stats]{optim}}, or further arguments to be passed to 
\code{\link[graphics]{plot}}.}

\item{digits}{numeric. Number of digits to be printed.}

\item{abc}{logical. If \code{FALSE} (the default), the Lientz empirical function 
is minimised using \code{\link[stats]{optim}}.}

\item{par}{numeric. The initial value used in \code{\link[stats]{optim}}.}

\item{optim.method}{character. If \code{abc = FALSE}, the method used in 
\code{\link[stats]{optim}}.}
}
\value{
\code{lientz} returns an object of class \code{c("lientz", "function")}; 
this is a function with additional attributes:
\itemize{
  \item{x}{ the \code{x} argument}
  \item{bw}{ the \code{bw} argument }
  \item{call}{ the call which produced the result }
}

\code{mlv.lientz} returns a numeric value, the mode estimate. 
If \code{abc = TRUE}, the \code{x} value minimizing the Lientz empirical 
function is returned. Otherwise, the \code{\link[stats]{optim}} method is 
used to perform minimization, and the attributes: 'value', 'counts', 
'convergence' and 'message', coming from the \code{\link[stats]{optim}} 
method, are added to the result.
}
\description{
The Lientz mode estimator is nothing but the value minimizing the empirical 
Lientz function. A 'plot' and a 'print' methods are provided.
}
\details{
The Lientz function is the smallest non-negative quantity \eqn{S(x,\beta)}{S(x,b)}, 
where \eqn{\beta}{b} = \code{bw}, such that 
\deqn{F(x+S(x,\beta)) - F(x-S(x,\beta)) \geq \beta.}{F(x+S(x,b)) - F(x-S(x,b)) >= b.} 
Lientz (1970) provided a way to estimate \eqn{S(x,\beta)}{S(x,b)}; this estimate 
is what we call the empirical Lientz function.
}
\note{
The user may call \code{mlv.lientz} through 
\code{mlv(x, method = "lientz", ...)}.
}
\examples{
# Unimodal distribution
x <- rbeta(1000,23,4)

## True mode
betaMode(23, 4)

## Lientz object
f <- lientz(x, 0.2)
print(f)
plot(f)

## Estimate of the mode
mlv(f)              # optim(shorth(x), fn = f)
mlv(f, abc = TRUE)  # x[which.min(f(x))]
mlv(x, method = "lientz", bw = 0.2)

# Bimodal distribution
x <- c(rnorm(1000,5,1), rnorm(1500, 22, 3))
f <- lientz(x, 0.1)
plot(f)

}
\references{
\itemize{
  \item Lientz B.P. (1969).
  On estimating points of local maxima and minima of density functions.
  \emph{Nonparametric Techniques in Statistical Inference (ed. M.L. Puri, Cambridge University Press}, p.275-282.
  
  \item Lientz B.P. (1970).
  Results on nonparametric modal intervals.
  \emph{SIAM J. Appl. Math.}, \bold{19}:356-366.
  
  \item Lientz B.P. (1972).
  Properties of modal intervals.
  \emph{SIAM J. Appl. Math.}, \bold{23}:1-5.
}
}
\seealso{
\code{\link[modeest]{mlv}} for general mode estimation; 
\code{\link[modeest]{shorth}} for the shorth estimate of the mode
}