File: mlv.Rd

package info (click to toggle)
r-cran-modeest 2.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 280 kB
  • sloc: makefile: 2
file content (128 lines) | stat: -rw-r--r-- 4,916 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mlv.R
\name{mlv}
\alias{mlv}
\alias{mlv.character}
\alias{mlv.factor}
\alias{mlv.logical}
\alias{mlv.integer}
\alias{mlv.default}
\alias{mlv1}
\title{Estimation of the Mode(s) or Most Likely Value(s)}
\usage{
mlv(x, ...)

\method{mlv}{character}(x, na.rm = FALSE, ...)

\method{mlv}{factor}(x, na.rm = FALSE, ...)

\method{mlv}{logical}(x, na.rm = FALSE, ...)

\method{mlv}{integer}(x, na.rm = FALSE, ...)

\method{mlv}{default}(x, bw = NULL, method, na.rm = FALSE, ...)

mlv1(x, ...)
}
\arguments{
\item{x}{numeric (vector of observations), or an object of class \code{"factor"}, \code{"integer"}, etc.}

\item{...}{Further arguments to be passed to the function called for computation.}

\item{na.rm}{logical. Should missing values be removed?}

\item{bw}{numeric. The bandwidth to be used. 
This may have different meanings regarding the \code{method} used.}

\item{method}{character. One of the methods available for computing the mode estimate. See 'Details'.}
}
\value{
A vector of the same type as \code{x}. 
Be aware that the length of this vector can be \code{> 1}.
}
\description{
\code{mlv} is a generic function for estimating the mode of a univariate distribution. 
Different estimates (or methods) are provided: 
\itemize{
  \item \code{\link{mfv}}, which returns the most frequent value(s) in a given numerical vector, 
  \item the \code{\link{Lientz}} mode estimator, which is the value minimizing the Lientz function estimate, 
  \item the Chernoff mode estimator, also called \code{\link{naive}} mode estimator, 
  which is defined as the center of the interval of given length containing the most observations, 
  \item the \code{\link{Venter}} mode estimator, including the \code{\link{shorth}}, i.e. the midpoint of the modal interval, 
  \item the \code{\link{Grenander}} mode estimator, 
  \item the half sample mode (\code{\link{HSM}}) and the half range mode (\code{\link{HRM}}), which are iterative versions of the Venter mode estimator, 
  \item \code{\link{Parzen}}'s kernel mode estimator, which is the value maximizing the kernel density estimate, 
  \item the \code{\link{Tsybakov}} mode estimator, based on a gradient-like recursive algorithm, 
  \item the \code{\link{Asselin}} de Beauville mode estimator, based on a algorithm detecting chains and holes in the sample, 
  \item the \code{\link{Vieu}} mode estimator, 
  \item the \code{\link{meanshift}} mode estimator. 
}

\code{mlv} can also be used to compute the mode of a given distribution, with \code{mlv.character}.
}
\details{
For the default method of \code{mlv}, available methods are \code{"lientz"}, 
\code{"naive"}, \code{"venter"}, 
\code{"grenander"}, \code{"hsm"}, \code{"parzen"}, 
\code{"tsybakov"}, \code{"asselin"}, and \code{"meanshift"}. 
See the description above and the associated links. 

If \code{x} is of class \code{"character"} (with length > 1), 
\code{"factor"}, or \code{"integer"}, then the most frequent value found in 
\code{x} is returned using \code{\link[statip]{mfv}} from package 
\pkg{statip}. 

If \code{x} is of class \code{"character"} (with length 1), 
\code{x} should be one of \code{"beta"}, \code{"cauchy"}, \code{"gev"}, etc. 
i.e. a character for which a function \code{*Mode} exists 
(for instance \code{betaMode}, \code{cauchyMode}, etc.). 
See \code{\link[modeest]{distrMode}} for the available functions. 
The mode of the corresponding distribution is returned. 

If \code{x} is of class \code{mlv.lientz}, see \code{\link[modeest]{Lientz}} 
for more details.
}
\examples{
# Unimodal distribution
x <- rbeta(1000,23,4)

## True mode
betaMode(23, 4)
# or
mlv("beta", shape1 = 23, shape2 = 4)

## Be aware of this behaviour: 
mlv("norm") # returns 0, the mode of the standard normal distribution
mlv("normal") # returns 0 again, since "normal" is matched with "norm"
mlv("abnormal") # returns "abnormal", since the input vector "abrnormal" 
# is not recognized as a distribution name, hence is taken as a character 
# vector from which the most frequent value is requested. 

## Estimate of the mode
mlv(x, method = "lientz", bw = 0.2)
mlv(x, method = "naive", bw = 1/3)
mlv(x, method = "venter", type = "shorth")
mlv(x, method = "grenander", p = 4)
mlv(x, method = "hsm")
mlv(x, method = "parzen", kernel = "gaussian")
mlv(x, method = "tsybakov", kernel = "gaussian")
mlv(x, method = "asselin", bw = 2/3)
mlv(x, method = "vieu")
mlv(x, method = "meanshift")

}
\references{
See the references on mode estimation on the \code{\link[modeest]{modeest-package}}'s page.
}
\seealso{
\code{\link[statip]{mfv}}, 
\code{\link[modeest]{parzen}}, 
\code{\link[modeest]{venter}}, 
\code{\link[modeest]{meanshift}},
\code{\link[modeest]{grenander}}, 
\code{\link[modeest]{hsm}}, 
\code{\link[modeest]{lientz}}, 
\code{\link[modeest]{naive}}, 
\code{\link[modeest]{tsybakov}}, 
\code{\link[modeest]{skewness}}
}