1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
\name{modeest}
\alias{modeest-package}
\alias{modeest}
\docType{package}
\title{
Mode Estimation
}
\description{
This package provides estimators of the mode of univariate
unimodal (and sometimes multimodal) data, and values of the modes of usual probability distributions.
%It also includes computation of the density function, distribution function, and quantile
%function of the Chernoff distribution, which is the limiting distribution of the
%Chernoff mode estimator.
For a complete list of functions, use \code{library(help = "modeest")} or \code{help.start()}.
}
\references{
\itemize{
\item Parzen E. (1962).
On estimation of a probability density function and mode.
\emph{Ann. Math. Stat.}, \bold{33}(3):1065-1076.
\item Chernoff H. (1964).
Estimation of the mode.
\emph{Ann. Inst. Statist. Math.}, \bold{16}:31-41.
\item Huber P.J. (1964).
Robust estimation of a location parameter.
\emph{Ann. Math. Statist.}, \bold{35}:73-101.
\item Dalenius T. (1965).
The Mode - A Negleted Statistical Parameter.
\emph{J. Royal Statist. Soc. A}, \bold{128}:110-117.
\item Grenander U. (1965).
Some direct estimates of the mode.
\emph{Ann. Math. Statist.}, \bold{36}:131-138.
\item Venter J.H. (1967).
On estimation of the mode.
\emph{Ann. Math. Statist.}, \bold{38}(5):1446-1455.
\item Lientz B.P. (1969).
On estimating points of local maxima and minima of density functions.
\emph{Nonparametric Techniques in Statistical Inference (ed. M.L. Puri, Cambridge University Press)}, p.275-282.
\item Lientz B.P. (1970).
Results on nonparametric modal intervals.
\emph{SIAM J. Appl. Math.}, \bold{19}:356-366.
\item Wegman E.J. (1971).% a revoir !!
A note on the estimation of the mode.
\emph{Ann. Math. Statist.}, \bold{42}(6):1909-1915.
\item Yamato H. (1971). % a revoir !!
Sequential estimation of a continuous probability density function and mode.
\emph{Bull. Math. Statist.}, \bold{14}:1-12.
\item Ekblom H. (1972).
A Monte Carlo investigation of mode estimators in small samples.
\emph{Applied Statistics}, \bold{21}:177-184.
\item Lientz B.P. (1972).
Properties of modal intervals.
\emph{SIAM J. Appl. Math.}, \bold{23}:1-5.
\item Konakov V.D. (1973).
On the asymptotic normality of the mode of multidimensional distributions.
\emph{Theory Probab. Appl.}, \bold{18}:794-803.
\item Robertson T. and Cryer J.D. (1974).
An iterative procedure for estimating the mode.
\emph{J. Amer. Statist. Assoc.}, \bold{69}(348):1012-1016.
\item Kim B.K. and Van Ryzin J. (1975).
Uniform consistency of a histogram density estimator and modal estimation.
\emph{Commun. Statist.}, \bold{4}:303-315.
\item Sager T.W. (1975).% a revoir !!
Consistency in nonparametric estimation of the mode.
\emph{Ann. Statist.}, \bold{3}(3):698-706.
\item Stone C.J. (1975).
Adaptive maximum likelihood estimators of a location parameter.
\emph{Ann. Statist.}, \bold{3}:267-284.
\item Mizoguchi R. and Shimura M. (1976).
Nonparametric Learning Without a Teacher Based on Mode Estimation.
\emph{IEEE Transactions on Computers}, \bold{C25}(11):1109-1117.
\item Adriano K.N., Gentle J.E. and Sposito V.A. (1977).
On the asymptotic bias of Grenander's mode estimator.
\emph{Commun. Statist.-Theor. Meth. A}, \bold{6}:773-776.
\item Asselin de Beauville J.-P. (1978).
Estimation non parametrique de la densite et du mode, exemple de la distribution Gamma.
\emph{Revue de Statistique Appliquee}, \bold{26}(3):47-70.
\item Sager T.W. (1978).% a revoir !!
Estimation of a multivariate mode.
\emph{Ann. Statist.}, \bold{6}:802-812.
\item Devroye L. (1979).% a revoir !!
Recursive estimation of the mode of a multivariate density.
\emph{Canadian J. Statist.}, \bold{7}(2):159-167.
\item Sager T.W. (1979).% a revoir !!
An iterative procedure for estimating a multivariate mode and isopleth.
\emph{J. Amer. Statist. Assoc.}, \bold{74}(366):329-339.
\item Eddy W.F. (1980).
Optimum kernel estimators of the mode.
\emph{Ann. Statist.}, \bold{8}(4):870-882.
\item Eddy W.F. (1982).
The Asymptotic Distributions of Kernel Estimators of the Mode.
\emph{Z. Wahrsch. Verw. Gebiete}, \bold{59}:279-290.
\item Hall P. (1982).
Asymptotic Theory of Grenander's Mode Estimator.
\emph{Z. Wahrsch. Verw. Gebiete}, \bold{60}:315-334.
\item Sager T.W. (1983).
Estimating modes and isopleths.
\emph{Commun. Statist.-Theor. Meth.}, \bold{12}(5):529-557.
\item Hartigan J.A. and Hartigan P.M. (1985).
The Dip Test of Unimodality.
\emph{Ann. Statist.}, \bold{13}:70-84.
\item Hartigan P.M. (1985).
Computation of the Dip Statistic to Test for Unimodality.
\emph{Appl. Statist. (JRSS C)}, \bold{34}:320-325.
\item Romano J.P. (1988).
On weak convergence and optimality of kernel density estimates of the mode.
\emph{Ann. Statist.}, \bold{16}(2):629-647.
\item Tsybakov A. (1990).
Recursive estimation of the mode of a multivariate distribution.
\emph{Probl. Inf. Transm.}, \bold{26}:31-37.
\item Hyndman R.J. (1996).
Computing and graphing highest density regions.
\emph{Amer. Statist.}, \bold{50}(2):120-126.
\item Vieu P. (1996).
A note on density mode estimation.
\emph{Statistics \& Probability Letters}, \bold{26}:297--307.
\item Leclerc J. (1997).
Comportement limite fort de deux estimateurs du mode : le shorth et l'estimateur naif.
\emph{C. R. Acad. Sci. Paris, Serie I}, \bold{325}(11):1207-1210.
%\item Minnotte M. C. (1997).
%Nonparametric testing of the existence of modes.
%\emph{Ann. Statist.}, \bold{25}(4):1646-1660.
%
%\item Futschik A. (1999).
%A new estimate of the mode based on the quantile density.
%\emph{Statistics and Probability Letters}, \bold{43}:145-152.
%
\item Leclerc J. (2000).
Strong limiting behavior of two estimates of the mode: the shorth and the naive estimator.
\emph{Statistics and Decisions}, \bold{18}(4).
%\item Groeneboom P.and Wellner J.A. (2001).
%Computing Chernoff's distribution.
%\emph{J. Comput. Graph. Statist.}, \bold{10}:388-400.
%
\item Shoung J.M. and Zhang C.H. (2001).
Least squares estimators of the mode of a unimodal regression function.
\emph{Ann. Statist.}, \bold{29}(3):648-665.
\item Bickel D.R. (2002).
Robust estimators of the mode and skewness of continuous data.
\emph{Computational Statistics and Data Analysis}, \bold{39}:153-163.
\item Abraham C., Biau G. and Cadre B. (2003).
Simple Estimation of the Mode of a Multivariate Density.
\emph{Canad. J. Statist.}, \bold{31}(1):23-34.
\item Bickel D.R. (2003).
Robust and efficient estimation of the mode of continuous data: The mode as a viable measure of central tendency.
\emph{J. Statist. Comput. Simul.}, \bold{73}:899-912.
\item Djeddour K., Mokkadem A. et Pelletier M. (2003).
Sur l'estimation recursive du mode et de la valeur modale d'une densite de probabilite.
\emph{Technical report 105}.
\item Djeddour K., Mokkadem A. et Pelletier M. (2003).
Application du principe de moyennisation a l'estimation recursive du mode et de la valeur modale d'une densite de probabilite.
\emph{Technical report 106}.
\item Hedges S.B. and Shah P. (2003).
Comparison of mode estimation methods and application in molecular clock analysis.
\emph{BMC Bioinformatics}, \bold{4}:31-41.
%\item Ziegler K. (2003).
%On the asymptotic normality of kernel regression estimators of the mode in the nonparametric random design model.
%\emph{Journal of Statistical Planning and Inference}, \bold{115}:123-144.
%
\item Herrmann E. and Ziegler K. (2004).
Rates of consistency for nonparametric estimation of the mode in absence of smoothness assumptions.
\emph{Statistics and Probability Letters}, \bold{68}:359-368.
\item Abraham C., Biau G. and Cadre B. (2004).
On the Asymptotic Properties of a Simple Estimate of the Mode.
\emph{ESAIM Probab. Stat.}, \bold{8}:1-11.
\item Mokkadem A. and Pelletier M. (2005).
Adaptive Estimation of the Mode of a Multivariate Density.
\emph{J. Nonparametr. Statist.}, \bold{17}(1):83-105.
\item Bickel D.R. and Fruehwirth R. (2006).
On a Fast, Robust Estimator of the Mode: Comparisons to Other Robust Estimators with Applications.
\emph{Computational Statistics and Data Analysis}, \bold{50}(12):3500-3530.
}
}
\keyword{ distribution }
\keyword{ univar }
\keyword{ robust }
\keyword{ nonparametric }
\seealso{ \code{\link[modeest]{mlv}} for general mode estimation.
}
|