File: tsybakov.Rd

package info (click to toggle)
r-cran-modeest 2.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 280 kB
  • sloc: makefile: 2
file content (102 lines) | stat: -rw-r--r-- 3,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/tsybakov.R
\name{tsybakov}
\alias{tsybakov}
\alias{Tsybakov}
\title{The Tsybakov mode estimator}
\usage{
tsybakov(
  x,
  bw = NULL,
  a,
  alpha = 0.9,
  kernel = "triangular",
  dmp = TRUE,
  par = shorth(x)
)
}
\arguments{
\item{x}{numeric. Vector of observations.}

\item{bw}{numeric. Vector of length \code{length(x)} 
giving the sequence of smoothing bandwidths to be used.}

\item{a}{numeric. Vector of length \code{length(x)} used in the 
gradient algorithm}

\item{alpha}{numeric. An alternative way of specifying \code{a}. See 'Details'.}

\item{kernel}{character. The kernel to be used. Available kernels are 
\code{"biweight"}, \code{"cosine"}, \code{"eddy"}, 
\code{"epanechnikov"}, \code{"gaussian"}, \code{"optcosine"}, 
\code{"rectangular"}, \code{"triangular"}, \code{"uniform"}. 
See \code{\link[stats]{density}} for more details on some 
of these kernels.}

\item{dmp}{logical. If \code{TRUE}, Djeddour et al. 
version of the estimate is used.}

\item{par}{numeric. Initial value in the gradient algorithm. 
Default value is \code{\link[modeest]{shorth}(x)}.}
}
\value{
A numeric value is returned, the mode estimate.
}
\description{
This mode estimator is based on a gradient-like recursive algorithm, 
more adapted for online estimation. 
It includes the Mizoguchi-Shimura (1976) mode estimator, 
based on the window training procedure.
}
\details{
If \code{bw} or \code{a} is missing, a default 
value advised by Djeddour et al (2003) is used: 
\code{bw = (1:length(x))^(-1/7)} and \code{a = (1:length(x))^(-alpha)}. 
(with \code{alpha = 0.9} if \code{alpha} is missing).
}
\note{
The user may call \code{tsybakov} through 
\code{mlv(x, method = "tsybakov", ...)}.
}
\section{Warning}{
 The Tsybakov mode estimate as it is presently 
computed does not work very well. 
The reasons of this inefficiency should be further investigated.
}

\examples{
x <- rbeta(1000, shape1 = 2, shape2 = 5)

## True mode:
betaMode(shape1 = 2, shape2 = 5)

## Estimation:
tsybakov(x, kernel = "triangular")
tsybakov(x, kernel = "gaussian", alpha = 0.99)
mlv(x, method = "tsybakov", kernel = "gaussian", alpha = 0.99)

}
\references{
\itemize{ 
  \item Mizoguchi R. and Shimura M. (1976).
  Nonparametric Learning Without a Teacher Based on Mode Estimation.
  \emph{IEEE Transactions on Computers}, \bold{C25}(11):1109-1117.
  
  \item Tsybakov A. (1990).
  Recursive estimation of the mode of a multivariate distribution.
  \emph{Probl. Inf. Transm.}, \bold{26}:31-37.
  
  \item Djeddour K., Mokkadem A. et Pelletier M. (2003).
  Sur l'estimation recursive du mode et de la valeur modale d'une densite de 
  probabilite.
  \emph{Technical report 105}.
  
  \item Djeddour K., Mokkadem A. et Pelletier M. (2003).
  Application du principe de moyennisation a l'estimation recursive du mode 
  et de la valeur modale d'une densite de probabilite.
  \emph{Technical report 106}.
}
}
\seealso{
\code{\link[modeest]{mlv}} for general mode estimation.
}