File: venter.Rd

package info (click to toggle)
r-cran-modeest 2.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 280 kB
  • sloc: makefile: 2
file content (110 lines) | stat: -rw-r--r-- 3,254 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/venter.R
\name{venter}
\alias{venter}
\alias{Venter}
\alias{shorth}
\title{The Venter / Dalenius / LMS mode estimator}
\usage{
venter(
  x,
  bw = NULL,
  k,
  iter = 1,
  type = 1,
  tie.action = "mean",
  tie.limit = 0.05,
  warn = FALSE
)

shorth(x, ...)
}
\arguments{
\item{x}{numeric. Vector of observations.}

\item{bw}{numeric. The bandwidth to be used. Should belong to (0, 1]. See 'Details'.}

\item{k}{numeric. See 'Details'.}

\item{iter}{numeric. Number of iterations.}

\item{type}{numeric or character. The type of Venter estimate to be computed. See 'Details'.}

\item{tie.action}{character. The action to take if a tie is encountered.}

\item{tie.limit}{numeric. A limit deciding whether or not a warning is given when a tie is 
encountered.}

\item{warn}{logical. If \code{TRUE}, a warning is thrown when a tie is encountered.}

\item{...}{Further arguments.}
}
\value{
A numeric value is returned, the mode estimate.
}
\description{
This function computes the Venter mode estimator, also called the Dalenius, 
or LMS (Least Median Square) mode estimator.
}
\details{
The modal interval, i.e. the shortest interval among intervals containing 
\code{k+1} observations, is first computed. (In dimension > 1, this question 
is known as a 'k-enclosing problem'.)
The user should either give the bandwidth \code{bw} or the argument \code{k}, 
\code{k} being taken equal to \code{ceiling(bw*n) - 1} if missing, so 
\code{bw} can be seen as the fraction of the observations to be considered 
for the shortest interval. 

If \code{type = 1}, the midpoint of the modal interval is returned.
If \code{type = 2}, the \code{floor((k+1)/2)}th element of the modal 
interval is returned.
If \code{type = 3} or \code{type = "dalenius"}, the median of the modal 
interval is returned.
If \code{type = 4} or \code{type = "shorth"}, the mean of the modal interval 
is returned.
If \code{type = 5} or \code{type = "ekblom"}, Ekblom's 
\eqn{L_{-\infty}}{L_{-infinity}} estimate is returned, see Ekblom (1972). 
If \code{type = 6} or \code{type = "hsm"}, the half sample mode (hsm) is 
computed, see \code{\link{hsm}}.
}
\note{
The user may call \code{venter} through 
\code{mlv(x, method = "venter", ...)}.
}
\examples{
library(evd)

# Unimodal distribution
x <- rgev(1000, loc = 23, scale = 1.5, shape = 0)

## True mode
gevMode(loc = 23, scale = 1.5, shape = 0)

## Estimate of the mode
venter(x, bw = 1/3)
mlv(x, method = "venter", bw = 1/3)

}
\references{
\itemize{
  \item Dalenius T. (1965). 
  The Mode - A Negleted Statistical Parameter. 
  \emph{J. Royal Statist. Soc. A}, \emph{128}:110-117.
  
  \item Venter J.H. (1967). 
  On estimation of the mode. 
  \emph{Ann. Math. Statist.}, \bold{38}(5):1446-1455. 
  
  \item Ekblom H. (1972). 
  A Monte Carlo investigation of mode estimators in small samples. 
  \emph{Applied Statistics}, \bold{21}:177-184.

  \item Leclerc J. (1997). 
  Comportement limite fort de deux estimateurs du mode : le shorth et l'estimateur naif. 
  \emph{C. R. Acad. Sci. Paris, Serie I}, \bold{325}(11):1207-1210.
}
}
\seealso{
\code{\link[modeest]{mlv}} for general mode estimation, 
\code{\link[modeest]{hsm}} for the half sample mode.
}