File: simulations.R

package info (click to toggle)
r-cran-modeldata 1.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 5,592 kB
  • sloc: sh: 13; makefile: 2
file content (611 lines) | stat: -rw-r--r-- 22,353 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#' Simulate datasets
#'
#' These functions can be used to generate simulated data for supervised
#' (classification and regression) and unsupervised modeling applications.
#'
#' @param num_samples Number of data points to simulate.
#' @param method A character string for the simulation method. For
#' classification, the single current option is "caret". For regression,
#' values can be "sapp_2014_1", "sapp_2014_2", "van_der_laan_2007_1", or
#' "van_der_laan_2007_2". See Details below.
#' @param intercept The intercept for the linear predictor.
#' @param num_linear Number of diminishing linear effects.
#' @param std_dev Gaussian distribution standard deviation for residuals.
#' Default values are shown below in Details.
#' @param num_vars Number of noise predictors to create.
#' @param cov_type The multivariate normal correlation structure of the
#' predictors. Possible values are "exchangeable" and "toeplitz".
#' @param cov_param A single numeric value for the exchangeable correlation
#' value or the base of the Toeplitz structure. See Details below.
#' @param factors A single logical for whether the binary indicators should be
#' encoded as factors or not.
#' @param outcome A single character string for what type of independent outcome
#' should be simulated (if any). The default value of "none" produces no extra
#' columns. Using "classification" will generate a `class` column with
#' `num_classes` values, equally distributed. A value of "regression" results
#' in an `outcome` column that contains independent standard normal values.
#' @param num_classes When `outcome = "classification"`, the number of classes
#' to simulate.
#' @param keep_truth A logical: should the true outcome value be retained for
#' the data? If so, the column name is `.truth`.
#' @param eqn,eqn_1,eqn_2,eqn_3 An R expression or  (one sided) formula that
#' only involves variables `A` and `B` that is used to compute the linear
#' predictor. External objects should not be used as symbols; see the examples
#' below on how to use external objects in the equations.
#' @param correlation A single numeric value for the correlation between variables
#'  `A` and `B`.
#'
#' @details
#'
#' ## Specific Regression and Classification methods
#'
#' These functions provide several supervised simulation methods (and one
#' unsupervised). Learn more by `method`:
#'
#' ### `method = "caret"`
#'
#' This is a simulated classification problem with two classes, originally
#'  implemented in [caret::twoClassSim()] with all numeric predictors. The
#'  predictors are simulated in different sets. First, two multivariate normal
#'  predictors (denoted here as `two_factor_1` and `two_factor_2`) are created
#'  with a correlation of about 0.65. They change the log-odds using main
#'  effects and an interaction:
#'
#' \preformatted{  intercept - 4 * two_factor_1 + 4 * two_factor_2 + 2 * two_factor_1 * two_factor_2 }
#'
#' The intercept is a parameter for the simulation and can be used to control
#' the amount of class imbalance.
#'
#' The second set of effects are linear with coefficients that alternate signs
#' and have a sequence of values between 2.5 and 0.25. For example, if there
#' were four predictors in this set, their contribution to the log-odds would
#' be
#'
#' \preformatted{  -2.5 * linear_1 + 1.75 * linear_2 -1.00 * linear_3 + 0.25 * linear_4}
#'
#' (Note that these column names may change based on the value of `num_linear`).
#'
#' The third set is a nonlinear function of a single predictor ranging between
#' `[0, 1]` called `non_linear_1` here:
#'
#' \preformatted{  (non_linear_1^3) + 2 * exp(-6 * (non_linear_1 - 0.3)^2) }
#'
#' The fourth set of informative predictors are copied from one of Friedman's
#' systems and use two more predictors (`non_linear_2` and `non_linear_3`):
#'
#' \preformatted{  2 * sin(non_linear_2 * non_linear_3) }
#'
#' All of these effects are added up to model the log-odds.
#'
#' ### `method = "sapp_2014_1"`
#'
#' This regression simulation is from Sapp et al. (2014). There are 20
#' independent Gaussian random predictors with mean zero and a variance of 9.
#' The prediction equation is:
#'
#' \preformatted{
#'   predictor_01 + sin(predictor_02) + log(abs(predictor_03)) +
#'    predictor_04^2 + predictor_05 * predictor_06 +
#'    ifelse(predictor_07 * predictor_08 * predictor_09 < 0, 1, 0) +
#'    ifelse(predictor_10 > 0, 1, 0) + predictor_11 * ifelse(predictor_11 > 0, 1, 0) +
#'    sqrt(abs(predictor_12)) + cos(predictor_13) + 2 * predictor_14 + abs(predictor_15) +
#'    ifelse(predictor_16 < -1, 1, 0) + predictor_17 * ifelse(predictor_17 < -1, 1, 0) -
#'    2 * predictor_18 - predictor_19 * predictor_20
#' }
#'
#' The error is Gaussian with mean zero and variance 9.
#'
#' ### `method = "sapp_2014_2"`
#'
#' This regression simulation is also from Sapp et al. (2014). There are 200
#' independent Gaussian predictors with mean zero and variance 16. The
#' prediction equation has an intercept of one and identical linear effects of
#' `log(abs(predictor))`.
#'
#' The error is Gaussian with mean zero and variance 25.
#'
#' ### `method = "van_der_laan_2007_1"`
#'
#' This is a regression simulation from van der Laan et al. (2007) with ten
#' random Bernoulli variables that have a 40% probability of being a value of
#' one. The true regression equation is:
#'
#' \preformatted{
#'   2 * predictor_01 * predictor_10 + 4 * predictor_02 * predictor_07 +
#'     3 * predictor_04 * predictor_05 - 5 * predictor_06 * predictor_10 +
#'     3 * predictor_08 * predictor_09 + predictor_01 * predictor_02 * predictor_04 -
#'     2 * predictor_07 * (1 - predictor_06) * predictor_02 * predictor_09 -
#'     4 * (1 - predictor_10) * predictor_01 * (1 - predictor_04)
#' }
#'
#' The error term is standard normal.
#'
#' ### `method = "van_der_laan_2007_2"`
#'
#' This is another regression simulation from van der Laan et al. (2007)  with
#' twenty Gaussians with mean zero and variance 16. The prediction equation is:
#'
#' \preformatted{
#'   predictor_01 * predictor_02 + predictor_10^2 - predictor_03 * predictor_17 -
#'     predictor_15 * predictor_04 + predictor_09 * predictor_05 + predictor_19 -
#'     predictor_20^2 + predictor_09 * predictor_08
#' }
#'
#' The error term is also Gaussian with mean zero and variance 16.
#'
#' ### `method = "hooker_2004"`
#'
#' Hooker (2004) and Sorokina _at al_ (2008) used the following:
#'
#' \preformatted{
#'     pi ^ (predictor_01 * predictor_02) * sqrt( 2 * predictor_03 ) -
#'     asin(predictor_04) + log(predictor_03  + predictor_05) -
#'    (predictor_09 / predictor_10) * sqrt (predictor_07 / predictor_08) -
#'     predictor_02 * predictor_07
#' }
#'
#' Predictors 1, 2, 3, 6, 7, and 9 are standard uniform while the others are
#' uniform on `[0.6, 1.0]`. The errors are normal with mean zero and default
#' standard deviation of 0.25.
#'
#' ## `sim_noise()`
#'
#' This function simulates a number of random normal variables with mean zero.
#' The values can be independent if `cov_param = 0`. Otherwise the values are
#' multivariate normal with non-diagonal covariance matrices. For
#' `cov_type = "exchangeable"`, the structure has unit variances and covariances
#' of `cov_param`. With `cov_type = "toeplitz"`, the covariances have an
#' exponential pattern (see example below).
#'
#' ## Logistic simulation
#'
#' `sim_logistic()` provides a flexible interface to simulating a logistic
#' regression model with two multivariate normal variables `A` and `B` (with
#' zero mean, unit variances and correlation determined by the `correlation`
#' argument).
#'
#' For example, using `eqn = A + B` would specify that the true probability of
#' the event was
#'
#' \preformatted{
#'    prob = 1 / (1 + exp(A + B))
#' }
#'
#' The class levels for the outcome column are `"one"` and `"two"`.
#'
#' ## Multinomial simulation
#'
#' `sim_multinomial()` can generate data with classes `"one"`, `"two"`, and
#' `"three"` based on the values in arguments `eqn_1`, `eqn_2`, and `eqn_3`,
#' respectfully. Like [sim_logistic()] these equations use predictors `A` and
#' `B`.
#'
#' The individual equations are evaluated and exponentiated. After this, their
#' values are, for each row of data, normalized to add up to one. These
#' probabilities are them passed to [stats::rmultinom()] to generate the outcome
#' values.
#'
#' @references
#' Van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner.
#' _Statistical applications in genetics and molecular biology_, 6(1).
#' DOI: 10.2202/1544-6115.1309.
#'
#' Sapp, S., van der Laan, M. J., & Canny, J. (2014). Subsemble: an ensemble
#' method for combining subset-specific algorithm fits. _Journal of applied
#' statistics_, 41(6), 1247-1259. DOI: 10.1080/02664763.2013.864263
#'
#' Hooker, G. (2004, August). Discovering additive structure in black box
#' functions. In _Proceedings of the tenth ACM SIGKDD international conference
#' on Knowledge discovery and data mining_ (pp. 575-580).
#' DOI: 10.1145/1014052.1014122
#'
#' Sorokina, D., Caruana, R., Riedewald, M., & Fink, D. (2008, July). Detecting
#' statistical interactions with additive groves of trees. In _Proceedings of
#' the 25th international conference on Machine learning_ (pp. 1000-1007).
#' DOI: 10.1145/1390156.1390282
#'
#' @examples
#' set.seed(1)
#' sim_regression(100)
#' sim_classification(100)
#'
#' # Flexible logistic regression simulation
#' if (rlang::is_installed("ggplot2")) {
#'   library(dplyr)
#'   library(ggplot2)
#'
#'   sim_logistic(1000, ~ .1 + 2 * A - 3 * B + 1 * A *B, corr = .7) %>%
#'     ggplot(aes(A, B, col = class)) +
#'     geom_point(alpha = 1/2) +
#'     coord_equal()
#'
#'   f_xor <- ~ 10 * xor(A > 0, B < 0)
#'   # or
#'   f_xor <- rlang::expr(10 * xor(A > 0, B < 0))
#'
#'   sim_logistic(1000, f_xor, keep_truth = TRUE) %>%
#'     ggplot(aes(A, B, col = class)) +
#'     geom_point(alpha = 1/2) +
#'     coord_equal() +
#'     theme_bw()
#' }
#'
#' ## How to use external symbols:
#'
#' a_coef <- 2
#' # splice the value in using rlang's !! operator
#' lp_eqn <- rlang::expr(!!a_coef * A+B)
#' lp_eqn
#' sim_logistic(5, lp_eqn)
#'
#' # Flexible multinomial regression simulation
#' if (rlang::is_installed("ggplot2")) {
#'
#   set.seed(2)
#   three_classes <-
#     sim_multinomial(
#       1000,
#       ~  -0.5    +  0.6 * abs(A),
#       ~ ifelse(A > 0 & B > 0, 1.0 + 0.2 * A / B, - 2),
#       ~ -0.6 * A + 0.50 * B -  A * B)
#
#   three_classes %>%
#     ggplot(aes(A, B, col = class, pch = class)) +
#     geom_point(alpha = 3/4) +
#     facet_wrap(~ class) +
#     coord_equal() +
#     theme_bw()
#' }
#' @export
sim_classification <- function(num_samples = 100, method = "caret",
                               intercept = -5, num_linear = 10,
                               keep_truth = FALSE) {
  method <- rlang::arg_match0(method, "caret", arg_nm = "method")

  if (method == "caret") {
    # Simulate two correlated normal variates
    var_cov <- matrix(c(2, 1.3, 1.3, 2), 2, 2)
    dat <- MASS::mvrnorm(n = num_samples, c(0, 0), var_cov)

    # Simulate a uniform for the first nonlinear term
    dat <- cbind(dat, stats::runif(num_samples, min = -1))
    # Simulate second two nonlinear terms
    dat <- cbind(dat, matrix(stats::runif(num_samples * 2), ncol = 2))

    # Assign names
    colnames(dat) <- c(paste0("two_factor_", 1:2), paste0("non_linear_", 1:3))

    linear_pred <-
      rlang::expr(
        !!intercept - 4 * two_factor_1 + 4 * two_factor_2 +
          2 * two_factor_1 * two_factor_2 +
          (non_linear_1^3) + 2 * exp(-6 * (non_linear_1 - 0.3)^2) +
          2 * sin(pi * non_linear_2 * non_linear_3)
      )

    # Simulate a series of linear coefficients
    if (num_linear > 0) {
      dat_linear <- matrix(stats::rnorm(num_samples * num_linear), ncol = num_linear)
      lin_names <- names0(num_linear, "linear_")
      colnames(dat_linear) <- lin_names
      lin_symbols <- rlang::syms(lin_names)
      lin_coefs <-
        seq(10, 1, length = num_linear) / 4 *
        rep_len(c(-1, 1), length.out = num_linear)
      lin_expr <-
        purrr::map2(lin_coefs, lin_symbols, ~ rlang::expr(!!.x * !!.y)) %>%
        purrr::reduce(function(l, r) rlang::expr(!!l + !!r))
      .truth <- rlang::expr(!!linear_pred + !!lin_expr)
      dat <- cbind(dat, dat_linear)
    }
  }

  dat <-
    tibble::as_tibble(dat) %>%
    dplyr::mutate(
      linear_pred = rlang::eval_tidy(linear_pred, data = .),
      .truth = stats::binomial()$linkinv(linear_pred),
      rand = stats::runif(num_samples),
      class = ifelse(rand <= .truth, "class_1", "class_2"),
      class = factor(class, levels = c("class_1", "class_2"))
    ) %>%
    dplyr::select(-linear_pred, -rand) %>%
    dplyr::relocate(class)

  if (!keep_truth) {
    dat <- dplyr::select(dat, -.truth)
  }

  dat
}

#' @export
#' @rdname sim_classification
sim_regression <-
  function(num_samples = 100, method = "sapp_2014_1", std_dev = NULL, factors = FALSE, keep_truth = FALSE) {
    reg_methods <- c("sapp_2014_1", "sapp_2014_2", "van_der_laan_2007_1",
                     "van_der_laan_2007_2", "hooker_2004")
    method <- rlang::arg_match0(method, reg_methods, arg_nm = "method")

    dat <-
      switch(method,
             sapp_2014_1 = sapp_2014_1(num_samples, std_dev),
             sapp_2014_2 = sapp_2014_2(num_samples, std_dev),
             van_der_laan_2007_1 = van_der_laan_2007_1(num_samples, std_dev, factors = factors),
             van_der_laan_2007_2 = van_der_laan_2007_2(num_samples, std_dev),
             hooker_2004 = hooker_2004(num_samples, std_dev)
      )

    if (!keep_truth) {
      dat <- dplyr::select(dat, -.truth)
    }

    dat
  }


sapp_2014_1 <- function(num_samples = 100, std_dev = NULL) {
  if (is.null(std_dev)) {
    std_dev <- 3
  }
  dat <- matrix(stats::rnorm(num_samples * 20, sd = 3), ncol = 20)
  colnames(dat) <- names0(20, "predictor_")
  dat <- tibble::as_tibble(dat)

  slc_14 <- rlang::expr(
    predictor_01 + sin(predictor_02) + log(abs(predictor_03)) +
      predictor_04^2 + predictor_05 * predictor_06 +
      ifelse(predictor_07 * predictor_08 * predictor_09 < 0, 1, 0) +
      ifelse(predictor_10 > 0, 1, 0) + predictor_11 * ifelse(predictor_11 > 0, 1, 0) +
      sqrt(abs(predictor_12)) + cos(predictor_13) + 2 * predictor_14 + abs(predictor_15) +
      ifelse(predictor_16 < -1, 1, 0) + predictor_17 * ifelse(predictor_17 < -1, 1, 0) -
      2 * predictor_18 - predictor_19 * predictor_20
  )

  dat <-
    tibble::as_tibble(dat) %>%
    dplyr::mutate(
      .truth = rlang::eval_tidy(slc_14, data = .),
      outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
    ) %>%
    dplyr::relocate(outcome)

  dat
}

sapp_2014_2 <- function(num_samples = 100, std_dev = 4) {
  if (is.null(std_dev)) {
    std_dev <- 5
  }
  dat <- matrix(stats::rnorm(num_samples * 200, sd = 4), ncol = 200)
  colnames(dat) <- names0(200, "predictor_")

  slc_14 <- function(x) sum(log(abs(x)))

  .truth <- apply(dat, 1, slc_14)
  y <- .truth + stats::rnorm(num_samples, sd = std_dev) - 1
  dat <- tibble::as_tibble(dat)
  dat$outcome <- y
  dat$.truth <- .truth
  dplyr::relocate(dat, outcome)
}

van_der_laan_2007_1 <- function(num_samples = 100, std_dev = NULL, factors = FALSE) {
  if (is.null(std_dev)) {
    std_dev <- 1
  }
  dat <- matrix(stats::rbinom(num_samples * 10, size = 1, prob = .4), ncol = 10)
  colnames(dat) <- names0(10, "predictor_")
  dat <- tibble::as_tibble(dat)

  lph_07 <- rlang::expr(
    2 * predictor_01 * predictor_10 + 4 * predictor_02 * predictor_07 + 3 * predictor_04 *
      predictor_05 - 5 * predictor_06 * predictor_10 + 3 * predictor_08 * predictor_09 +
      predictor_01 * predictor_02 * predictor_04 -
      2 * predictor_07 * (1 - predictor_06) * predictor_02 *
      predictor_09 - 4 * (1 - predictor_10) * predictor_01 * (1 - predictor_04)
  )

  dat <-
    tibble::as_tibble(dat) %>%
    dplyr::mutate(
      .truth = rlang::eval_tidy(lph_07, data = .),
      outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
    ) %>%
    dplyr::relocate(outcome)

  if (factors) {
    dat <-
      dat %>%
      dplyr::mutate(
        dplyr::across(2:11, ~ ifelse(.x == 1, "yes", "no")),
        dplyr::across(2:11, ~ factor(.x, levels = c("yes", "no")))
      )
  }

  dat
}

van_der_laan_2007_2 <- function(num_samples = 100, std_dev = NULL) {
  if (is.null(std_dev)) {
    std_dev <- 4
  }
  dat <- matrix(stats::rnorm(num_samples * 20, sd = 4), ncol = 20)
  colnames(dat) <- names0(20, "predictor_")
  dat <- tibble::as_tibble(dat)

  lph_07 <- rlang::expr(
    predictor_01 * predictor_02 + predictor_10^2 - predictor_03 * predictor_17 -
      predictor_15 * predictor_04 + predictor_09 * predictor_05 + predictor_19 -
      predictor_20^2 + predictor_09 * predictor_08
  )

  dat <-
    tibble::as_tibble(dat) %>%
    dplyr::mutate(
      .truth = rlang::eval_tidy(lph_07, data = .),
      outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
    ) %>%
    dplyr::relocate(outcome)

  dat
}

# TODO see table 1 of Detecting Statistical Interactions from Neural Network Weights for more
hooker_2004 <- function(num_samples = 100, std_dev = NULL) {
  if (is.null(std_dev)) {
    std_dev <- 1 / 4
  }
  uni_1 <- matrix(stats::runif(num_samples * 6), ncol = 6)
  uni_2 <- matrix(stats::runif(num_samples * 4, min = 0.6), ncol = 4)
  all_names <- names0(10, "predictor_")
  colnames(uni_1) <- all_names[c(1, 2, 3, 6, 7, 9)]
  colnames(uni_2) <- all_names[c(4, 5, 8, 10)]
  dat <- cbind(uni_1, uni_2)
  dat <- tibble::as_tibble(dat) %>% dplyr::select(dplyr::all_of(all_names))

  hooker_2004 <- rlang::expr(
    pi ^ (predictor_01 * predictor_02) * sqrt( 2 * predictor_03 ) -
      asin(predictor_04) + log(predictor_03  + predictor_05) -
      (predictor_09 / predictor_10) * sqrt (predictor_07 / predictor_08) -
      predictor_02 * predictor_07
  )

  dat <-
    tibble::as_tibble(dat) %>%
    dplyr::mutate(
      .truth = rlang::eval_tidy(hooker_2004, data = .),
      outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
    ) %>%
    dplyr::relocate(outcome)

  dat
}

# ------------------------------------------------------------------------------

#' @export
#' @rdname sim_classification
sim_noise <- function(num_samples, num_vars, cov_type = "exchangeable",
                      outcome = "none", num_classes = 2, cov_param = 0) {
  cov_type <- rlang::arg_match0(cov_type, c("exchangeable", "toeplitz"),
                                arg_nm = "cov_type"
  )
  outcome <- rlang::arg_match0(outcome, c("none", "classification", "regression"),
                               arg_nm = "outcome"
  )
  if (cov_type == "exchangeable") {
    var_cov <- matrix(cov_param, ncol = num_vars, nrow = num_vars)
    diag(var_cov) <- 1
  } else {
    var_cov_values <- cov_param^(seq(0, num_vars - 1, by = 1))
    var_cov <- stats::toeplitz(var_cov_values)
  }
  dat <- MASS::mvrnorm(num_samples, mu = rep(0, num_vars), Sigma = var_cov)
  colnames(dat) <- names0(num_vars, "noise_")
  dat <- tibble::as_tibble(dat)

  if (outcome == "classification") {
    if (num_classes <= 0) {
      rlang::abort("'num_classes' should be a positive integer.")
    }
    cls <- names0(num_classes, "class_")
    dat <-
      dat %>%
      dplyr::mutate(
        class = sample(cls, num_samples, replace = TRUE),
        class = factor(class, levels = cls)
      ) %>%
      dplyr::relocate(class)
  } else if (outcome == "regression") {
    dat <-
      dat %>%
      dplyr::mutate(outcome = stats::rnorm(num_samples)) %>%
      dplyr::relocate(outcome)
  }
  dat
}

# ------------------------------------------------------------------------------

#' @export
#' @rdname sim_classification
sim_logistic <- function(num_samples, eqn, correlation = 0, keep_truth = FALSE) {
  sigma <- matrix(c(1, correlation, correlation, 1), 2, 2)
  eqn <- rlang::get_expr(eqn)
  check_equations(eqn)
  dat <-
    data.frame(MASS::mvrnorm(n = num_samples, c(0, 0), sigma)) %>%
    stats::setNames(LETTERS[1:2]) %>%
    dplyr::mutate(
      .linear_pred = rlang::eval_tidy(eqn, data = .),
      .linear_pred = as.numeric(.linear_pred),
      .truth = stats::binomial()$linkinv(.linear_pred),
      .rand = stats::runif(num_samples),
      class = ifelse(.rand <= .truth, "one", "two"),
      class = factor(class, levels = c("one", "two"))
    ) %>%
    dplyr::select(-.rand) %>%
    tibble::as_tibble()

  if (!keep_truth) {
    dat <- dat %>% dplyr::select(-.truth, -.linear_pred)
  }
  dat
}

# ------------------------------------------------------------------------------

#' @export
#' @rdname sim_classification
sim_multinomial <- function(num_samples, eqn_1, eqn_2, eqn_3, correlation = 0, keep_truth = FALSE) {
  sigma <- matrix(c(1, correlation, correlation, 1), 2, 2)
  eqn_1 <- rlang::get_expr(eqn_1)
  eqn_2 <- rlang::get_expr(eqn_2)
  eqn_3 <- rlang::get_expr(eqn_3)
  purrr::map_lgl(list(eqn_1, eqn_2, eqn_3), check_equations)

  dat <-
    data.frame(MASS::mvrnorm(n = num_samples, c(0, 0), sigma)) %>%
    stats::setNames(LETTERS[1:2]) %>%
    dplyr::mutate(
      .formula_1 = rlang::eval_tidy(eqn_1, data = .),
      .formula_2 = rlang::eval_tidy(eqn_2, data = .),
      .formula_3 = rlang::eval_tidy(eqn_3, data = .),
      dplyr::across(c(dplyr::starts_with(".formula_")), ~ exp(.x))
    )
  probs <- as.matrix(dplyr::select(dat, dplyr::starts_with(".formula_")))
  probs <- t(apply(probs, 1, function(x) x/sum(x)))
  which_class <- function(x) which.max(stats::rmultinom(1, 1, x))
  index <- apply(probs, 1, which_class)
  lvls <- c("one", "two", "three")
  dat$class <- factor(lvls[index], levels = lvls)
  dat <- dat %>% dplyr::select(-dplyr::starts_with(".formula_"))
  if (keep_truth) {
    colnames(probs) <- paste0(".truth_", lvls)
    probs <- tibble::as_tibble(probs)
    dat <- dplyr::bind_cols(dat, probs)
  }
  tibble::as_tibble(dat)
}

# ------------------------------------------------------------------------------

check_equations <- function(x, expected = LETTERS[1:2]) {
  used <- sort(all.vars(x))
  its_fine <- length(setdiff(used, expected)) == 0
  if (!its_fine) {
    rlang::abort("The model equations should only use variables/objects `A` and `B`")
  }
  invisible(its_fine)
}

names0 <- function(num, prefix = "x") {
  if (num < 1) {
    rlang::abort("`num` should be > 0")
  }
  ind <- format(1:num)
  ind <- gsub(" ", "0", ind)
  paste0(prefix, ind)
}