1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
#' Simulate datasets
#'
#' These functions can be used to generate simulated data for supervised
#' (classification and regression) and unsupervised modeling applications.
#'
#' @param num_samples Number of data points to simulate.
#' @param method A character string for the simulation method. For
#' classification, the single current option is "caret". For regression,
#' values can be "sapp_2014_1", "sapp_2014_2", "van_der_laan_2007_1", or
#' "van_der_laan_2007_2". See Details below.
#' @param intercept The intercept for the linear predictor.
#' @param num_linear Number of diminishing linear effects.
#' @param std_dev Gaussian distribution standard deviation for residuals.
#' Default values are shown below in Details.
#' @param num_vars Number of noise predictors to create.
#' @param cov_type The multivariate normal correlation structure of the
#' predictors. Possible values are "exchangeable" and "toeplitz".
#' @param cov_param A single numeric value for the exchangeable correlation
#' value or the base of the Toeplitz structure. See Details below.
#' @param factors A single logical for whether the binary indicators should be
#' encoded as factors or not.
#' @param outcome A single character string for what type of independent outcome
#' should be simulated (if any). The default value of "none" produces no extra
#' columns. Using "classification" will generate a `class` column with
#' `num_classes` values, equally distributed. A value of "regression" results
#' in an `outcome` column that contains independent standard normal values.
#' @param num_classes When `outcome = "classification"`, the number of classes
#' to simulate.
#' @param keep_truth A logical: should the true outcome value be retained for
#' the data? If so, the column name is `.truth`.
#' @param eqn,eqn_1,eqn_2,eqn_3 An R expression or (one sided) formula that
#' only involves variables `A` and `B` that is used to compute the linear
#' predictor. External objects should not be used as symbols; see the examples
#' below on how to use external objects in the equations.
#' @param correlation A single numeric value for the correlation between variables
#' `A` and `B`.
#'
#' @details
#'
#' ## Specific Regression and Classification methods
#'
#' These functions provide several supervised simulation methods (and one
#' unsupervised). Learn more by `method`:
#'
#' ### `method = "caret"`
#'
#' This is a simulated classification problem with two classes, originally
#' implemented in [caret::twoClassSim()] with all numeric predictors. The
#' predictors are simulated in different sets. First, two multivariate normal
#' predictors (denoted here as `two_factor_1` and `two_factor_2`) are created
#' with a correlation of about 0.65. They change the log-odds using main
#' effects and an interaction:
#'
#' \preformatted{ intercept - 4 * two_factor_1 + 4 * two_factor_2 + 2 * two_factor_1 * two_factor_2 }
#'
#' The intercept is a parameter for the simulation and can be used to control
#' the amount of class imbalance.
#'
#' The second set of effects are linear with coefficients that alternate signs
#' and have a sequence of values between 2.5 and 0.25. For example, if there
#' were four predictors in this set, their contribution to the log-odds would
#' be
#'
#' \preformatted{ -2.5 * linear_1 + 1.75 * linear_2 -1.00 * linear_3 + 0.25 * linear_4}
#'
#' (Note that these column names may change based on the value of `num_linear`).
#'
#' The third set is a nonlinear function of a single predictor ranging between
#' `[0, 1]` called `non_linear_1` here:
#'
#' \preformatted{ (non_linear_1^3) + 2 * exp(-6 * (non_linear_1 - 0.3)^2) }
#'
#' The fourth set of informative predictors are copied from one of Friedman's
#' systems and use two more predictors (`non_linear_2` and `non_linear_3`):
#'
#' \preformatted{ 2 * sin(non_linear_2 * non_linear_3) }
#'
#' All of these effects are added up to model the log-odds.
#'
#' ### `method = "sapp_2014_1"`
#'
#' This regression simulation is from Sapp et al. (2014). There are 20
#' independent Gaussian random predictors with mean zero and a variance of 9.
#' The prediction equation is:
#'
#' \preformatted{
#' predictor_01 + sin(predictor_02) + log(abs(predictor_03)) +
#' predictor_04^2 + predictor_05 * predictor_06 +
#' ifelse(predictor_07 * predictor_08 * predictor_09 < 0, 1, 0) +
#' ifelse(predictor_10 > 0, 1, 0) + predictor_11 * ifelse(predictor_11 > 0, 1, 0) +
#' sqrt(abs(predictor_12)) + cos(predictor_13) + 2 * predictor_14 + abs(predictor_15) +
#' ifelse(predictor_16 < -1, 1, 0) + predictor_17 * ifelse(predictor_17 < -1, 1, 0) -
#' 2 * predictor_18 - predictor_19 * predictor_20
#' }
#'
#' The error is Gaussian with mean zero and variance 9.
#'
#' ### `method = "sapp_2014_2"`
#'
#' This regression simulation is also from Sapp et al. (2014). There are 200
#' independent Gaussian predictors with mean zero and variance 16. The
#' prediction equation has an intercept of one and identical linear effects of
#' `log(abs(predictor))`.
#'
#' The error is Gaussian with mean zero and variance 25.
#'
#' ### `method = "van_der_laan_2007_1"`
#'
#' This is a regression simulation from van der Laan et al. (2007) with ten
#' random Bernoulli variables that have a 40% probability of being a value of
#' one. The true regression equation is:
#'
#' \preformatted{
#' 2 * predictor_01 * predictor_10 + 4 * predictor_02 * predictor_07 +
#' 3 * predictor_04 * predictor_05 - 5 * predictor_06 * predictor_10 +
#' 3 * predictor_08 * predictor_09 + predictor_01 * predictor_02 * predictor_04 -
#' 2 * predictor_07 * (1 - predictor_06) * predictor_02 * predictor_09 -
#' 4 * (1 - predictor_10) * predictor_01 * (1 - predictor_04)
#' }
#'
#' The error term is standard normal.
#'
#' ### `method = "van_der_laan_2007_2"`
#'
#' This is another regression simulation from van der Laan et al. (2007) with
#' twenty Gaussians with mean zero and variance 16. The prediction equation is:
#'
#' \preformatted{
#' predictor_01 * predictor_02 + predictor_10^2 - predictor_03 * predictor_17 -
#' predictor_15 * predictor_04 + predictor_09 * predictor_05 + predictor_19 -
#' predictor_20^2 + predictor_09 * predictor_08
#' }
#'
#' The error term is also Gaussian with mean zero and variance 16.
#'
#' ### `method = "hooker_2004"`
#'
#' Hooker (2004) and Sorokina _at al_ (2008) used the following:
#'
#' \preformatted{
#' pi ^ (predictor_01 * predictor_02) * sqrt( 2 * predictor_03 ) -
#' asin(predictor_04) + log(predictor_03 + predictor_05) -
#' (predictor_09 / predictor_10) * sqrt (predictor_07 / predictor_08) -
#' predictor_02 * predictor_07
#' }
#'
#' Predictors 1, 2, 3, 6, 7, and 9 are standard uniform while the others are
#' uniform on `[0.6, 1.0]`. The errors are normal with mean zero and default
#' standard deviation of 0.25.
#'
#' ## `sim_noise()`
#'
#' This function simulates a number of random normal variables with mean zero.
#' The values can be independent if `cov_param = 0`. Otherwise the values are
#' multivariate normal with non-diagonal covariance matrices. For
#' `cov_type = "exchangeable"`, the structure has unit variances and covariances
#' of `cov_param`. With `cov_type = "toeplitz"`, the covariances have an
#' exponential pattern (see example below).
#'
#' ## Logistic simulation
#'
#' `sim_logistic()` provides a flexible interface to simulating a logistic
#' regression model with two multivariate normal variables `A` and `B` (with
#' zero mean, unit variances and correlation determined by the `correlation`
#' argument).
#'
#' For example, using `eqn = A + B` would specify that the true probability of
#' the event was
#'
#' \preformatted{
#' prob = 1 / (1 + exp(A + B))
#' }
#'
#' The class levels for the outcome column are `"one"` and `"two"`.
#'
#' ## Multinomial simulation
#'
#' `sim_multinomial()` can generate data with classes `"one"`, `"two"`, and
#' `"three"` based on the values in arguments `eqn_1`, `eqn_2`, and `eqn_3`,
#' respectfully. Like [sim_logistic()] these equations use predictors `A` and
#' `B`.
#'
#' The individual equations are evaluated and exponentiated. After this, their
#' values are, for each row of data, normalized to add up to one. These
#' probabilities are them passed to [stats::rmultinom()] to generate the outcome
#' values.
#'
#' @references
#' Van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner.
#' _Statistical applications in genetics and molecular biology_, 6(1).
#' DOI: 10.2202/1544-6115.1309.
#'
#' Sapp, S., van der Laan, M. J., & Canny, J. (2014). Subsemble: an ensemble
#' method for combining subset-specific algorithm fits. _Journal of applied
#' statistics_, 41(6), 1247-1259. DOI: 10.1080/02664763.2013.864263
#'
#' Hooker, G. (2004, August). Discovering additive structure in black box
#' functions. In _Proceedings of the tenth ACM SIGKDD international conference
#' on Knowledge discovery and data mining_ (pp. 575-580).
#' DOI: 10.1145/1014052.1014122
#'
#' Sorokina, D., Caruana, R., Riedewald, M., & Fink, D. (2008, July). Detecting
#' statistical interactions with additive groves of trees. In _Proceedings of
#' the 25th international conference on Machine learning_ (pp. 1000-1007).
#' DOI: 10.1145/1390156.1390282
#'
#' @examples
#' set.seed(1)
#' sim_regression(100)
#' sim_classification(100)
#'
#' # Flexible logistic regression simulation
#' if (rlang::is_installed("ggplot2")) {
#' library(dplyr)
#' library(ggplot2)
#'
#' sim_logistic(1000, ~ .1 + 2 * A - 3 * B + 1 * A *B, corr = .7) %>%
#' ggplot(aes(A, B, col = class)) +
#' geom_point(alpha = 1/2) +
#' coord_equal()
#'
#' f_xor <- ~ 10 * xor(A > 0, B < 0)
#' # or
#' f_xor <- rlang::expr(10 * xor(A > 0, B < 0))
#'
#' sim_logistic(1000, f_xor, keep_truth = TRUE) %>%
#' ggplot(aes(A, B, col = class)) +
#' geom_point(alpha = 1/2) +
#' coord_equal() +
#' theme_bw()
#' }
#'
#' ## How to use external symbols:
#'
#' a_coef <- 2
#' # splice the value in using rlang's !! operator
#' lp_eqn <- rlang::expr(!!a_coef * A+B)
#' lp_eqn
#' sim_logistic(5, lp_eqn)
#'
#' # Flexible multinomial regression simulation
#' if (rlang::is_installed("ggplot2")) {
#'
# set.seed(2)
# three_classes <-
# sim_multinomial(
# 1000,
# ~ -0.5 + 0.6 * abs(A),
# ~ ifelse(A > 0 & B > 0, 1.0 + 0.2 * A / B, - 2),
# ~ -0.6 * A + 0.50 * B - A * B)
#
# three_classes %>%
# ggplot(aes(A, B, col = class, pch = class)) +
# geom_point(alpha = 3/4) +
# facet_wrap(~ class) +
# coord_equal() +
# theme_bw()
#' }
#' @export
sim_classification <- function(num_samples = 100, method = "caret",
intercept = -5, num_linear = 10,
keep_truth = FALSE) {
method <- rlang::arg_match0(method, "caret", arg_nm = "method")
if (method == "caret") {
# Simulate two correlated normal variates
var_cov <- matrix(c(2, 1.3, 1.3, 2), 2, 2)
dat <- MASS::mvrnorm(n = num_samples, c(0, 0), var_cov)
# Simulate a uniform for the first nonlinear term
dat <- cbind(dat, stats::runif(num_samples, min = -1))
# Simulate second two nonlinear terms
dat <- cbind(dat, matrix(stats::runif(num_samples * 2), ncol = 2))
# Assign names
colnames(dat) <- c(paste0("two_factor_", 1:2), paste0("non_linear_", 1:3))
linear_pred <-
rlang::expr(
!!intercept - 4 * two_factor_1 + 4 * two_factor_2 +
2 * two_factor_1 * two_factor_2 +
(non_linear_1^3) + 2 * exp(-6 * (non_linear_1 - 0.3)^2) +
2 * sin(pi * non_linear_2 * non_linear_3)
)
# Simulate a series of linear coefficients
if (num_linear > 0) {
dat_linear <- matrix(stats::rnorm(num_samples * num_linear), ncol = num_linear)
lin_names <- names0(num_linear, "linear_")
colnames(dat_linear) <- lin_names
lin_symbols <- rlang::syms(lin_names)
lin_coefs <-
seq(10, 1, length = num_linear) / 4 *
rep_len(c(-1, 1), length.out = num_linear)
lin_expr <-
purrr::map2(lin_coefs, lin_symbols, ~ rlang::expr(!!.x * !!.y)) %>%
purrr::reduce(function(l, r) rlang::expr(!!l + !!r))
.truth <- rlang::expr(!!linear_pred + !!lin_expr)
dat <- cbind(dat, dat_linear)
}
}
dat <-
tibble::as_tibble(dat) %>%
dplyr::mutate(
linear_pred = rlang::eval_tidy(linear_pred, data = .),
.truth = stats::binomial()$linkinv(linear_pred),
rand = stats::runif(num_samples),
class = ifelse(rand <= .truth, "class_1", "class_2"),
class = factor(class, levels = c("class_1", "class_2"))
) %>%
dplyr::select(-linear_pred, -rand) %>%
dplyr::relocate(class)
if (!keep_truth) {
dat <- dplyr::select(dat, -.truth)
}
dat
}
#' @export
#' @rdname sim_classification
sim_regression <-
function(num_samples = 100, method = "sapp_2014_1", std_dev = NULL, factors = FALSE, keep_truth = FALSE) {
reg_methods <- c("sapp_2014_1", "sapp_2014_2", "van_der_laan_2007_1",
"van_der_laan_2007_2", "hooker_2004")
method <- rlang::arg_match0(method, reg_methods, arg_nm = "method")
dat <-
switch(method,
sapp_2014_1 = sapp_2014_1(num_samples, std_dev),
sapp_2014_2 = sapp_2014_2(num_samples, std_dev),
van_der_laan_2007_1 = van_der_laan_2007_1(num_samples, std_dev, factors = factors),
van_der_laan_2007_2 = van_der_laan_2007_2(num_samples, std_dev),
hooker_2004 = hooker_2004(num_samples, std_dev)
)
if (!keep_truth) {
dat <- dplyr::select(dat, -.truth)
}
dat
}
sapp_2014_1 <- function(num_samples = 100, std_dev = NULL) {
if (is.null(std_dev)) {
std_dev <- 3
}
dat <- matrix(stats::rnorm(num_samples * 20, sd = 3), ncol = 20)
colnames(dat) <- names0(20, "predictor_")
dat <- tibble::as_tibble(dat)
slc_14 <- rlang::expr(
predictor_01 + sin(predictor_02) + log(abs(predictor_03)) +
predictor_04^2 + predictor_05 * predictor_06 +
ifelse(predictor_07 * predictor_08 * predictor_09 < 0, 1, 0) +
ifelse(predictor_10 > 0, 1, 0) + predictor_11 * ifelse(predictor_11 > 0, 1, 0) +
sqrt(abs(predictor_12)) + cos(predictor_13) + 2 * predictor_14 + abs(predictor_15) +
ifelse(predictor_16 < -1, 1, 0) + predictor_17 * ifelse(predictor_17 < -1, 1, 0) -
2 * predictor_18 - predictor_19 * predictor_20
)
dat <-
tibble::as_tibble(dat) %>%
dplyr::mutate(
.truth = rlang::eval_tidy(slc_14, data = .),
outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
) %>%
dplyr::relocate(outcome)
dat
}
sapp_2014_2 <- function(num_samples = 100, std_dev = 4) {
if (is.null(std_dev)) {
std_dev <- 5
}
dat <- matrix(stats::rnorm(num_samples * 200, sd = 4), ncol = 200)
colnames(dat) <- names0(200, "predictor_")
slc_14 <- function(x) sum(log(abs(x)))
.truth <- apply(dat, 1, slc_14)
y <- .truth + stats::rnorm(num_samples, sd = std_dev) - 1
dat <- tibble::as_tibble(dat)
dat$outcome <- y
dat$.truth <- .truth
dplyr::relocate(dat, outcome)
}
van_der_laan_2007_1 <- function(num_samples = 100, std_dev = NULL, factors = FALSE) {
if (is.null(std_dev)) {
std_dev <- 1
}
dat <- matrix(stats::rbinom(num_samples * 10, size = 1, prob = .4), ncol = 10)
colnames(dat) <- names0(10, "predictor_")
dat <- tibble::as_tibble(dat)
lph_07 <- rlang::expr(
2 * predictor_01 * predictor_10 + 4 * predictor_02 * predictor_07 + 3 * predictor_04 *
predictor_05 - 5 * predictor_06 * predictor_10 + 3 * predictor_08 * predictor_09 +
predictor_01 * predictor_02 * predictor_04 -
2 * predictor_07 * (1 - predictor_06) * predictor_02 *
predictor_09 - 4 * (1 - predictor_10) * predictor_01 * (1 - predictor_04)
)
dat <-
tibble::as_tibble(dat) %>%
dplyr::mutate(
.truth = rlang::eval_tidy(lph_07, data = .),
outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
) %>%
dplyr::relocate(outcome)
if (factors) {
dat <-
dat %>%
dplyr::mutate(
dplyr::across(2:11, ~ ifelse(.x == 1, "yes", "no")),
dplyr::across(2:11, ~ factor(.x, levels = c("yes", "no")))
)
}
dat
}
van_der_laan_2007_2 <- function(num_samples = 100, std_dev = NULL) {
if (is.null(std_dev)) {
std_dev <- 4
}
dat <- matrix(stats::rnorm(num_samples * 20, sd = 4), ncol = 20)
colnames(dat) <- names0(20, "predictor_")
dat <- tibble::as_tibble(dat)
lph_07 <- rlang::expr(
predictor_01 * predictor_02 + predictor_10^2 - predictor_03 * predictor_17 -
predictor_15 * predictor_04 + predictor_09 * predictor_05 + predictor_19 -
predictor_20^2 + predictor_09 * predictor_08
)
dat <-
tibble::as_tibble(dat) %>%
dplyr::mutate(
.truth = rlang::eval_tidy(lph_07, data = .),
outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
) %>%
dplyr::relocate(outcome)
dat
}
# TODO see table 1 of Detecting Statistical Interactions from Neural Network Weights for more
hooker_2004 <- function(num_samples = 100, std_dev = NULL) {
if (is.null(std_dev)) {
std_dev <- 1 / 4
}
uni_1 <- matrix(stats::runif(num_samples * 6), ncol = 6)
uni_2 <- matrix(stats::runif(num_samples * 4, min = 0.6), ncol = 4)
all_names <- names0(10, "predictor_")
colnames(uni_1) <- all_names[c(1, 2, 3, 6, 7, 9)]
colnames(uni_2) <- all_names[c(4, 5, 8, 10)]
dat <- cbind(uni_1, uni_2)
dat <- tibble::as_tibble(dat) %>% dplyr::select(dplyr::all_of(all_names))
hooker_2004 <- rlang::expr(
pi ^ (predictor_01 * predictor_02) * sqrt( 2 * predictor_03 ) -
asin(predictor_04) + log(predictor_03 + predictor_05) -
(predictor_09 / predictor_10) * sqrt (predictor_07 / predictor_08) -
predictor_02 * predictor_07
)
dat <-
tibble::as_tibble(dat) %>%
dplyr::mutate(
.truth = rlang::eval_tidy(hooker_2004, data = .),
outcome = .truth + stats::rnorm(num_samples, sd = std_dev)
) %>%
dplyr::relocate(outcome)
dat
}
# ------------------------------------------------------------------------------
#' @export
#' @rdname sim_classification
sim_noise <- function(num_samples, num_vars, cov_type = "exchangeable",
outcome = "none", num_classes = 2, cov_param = 0) {
cov_type <- rlang::arg_match0(cov_type, c("exchangeable", "toeplitz"),
arg_nm = "cov_type"
)
outcome <- rlang::arg_match0(outcome, c("none", "classification", "regression"),
arg_nm = "outcome"
)
if (cov_type == "exchangeable") {
var_cov <- matrix(cov_param, ncol = num_vars, nrow = num_vars)
diag(var_cov) <- 1
} else {
var_cov_values <- cov_param^(seq(0, num_vars - 1, by = 1))
var_cov <- stats::toeplitz(var_cov_values)
}
dat <- MASS::mvrnorm(num_samples, mu = rep(0, num_vars), Sigma = var_cov)
colnames(dat) <- names0(num_vars, "noise_")
dat <- tibble::as_tibble(dat)
if (outcome == "classification") {
if (num_classes <= 0) {
rlang::abort("'num_classes' should be a positive integer.")
}
cls <- names0(num_classes, "class_")
dat <-
dat %>%
dplyr::mutate(
class = sample(cls, num_samples, replace = TRUE),
class = factor(class, levels = cls)
) %>%
dplyr::relocate(class)
} else if (outcome == "regression") {
dat <-
dat %>%
dplyr::mutate(outcome = stats::rnorm(num_samples)) %>%
dplyr::relocate(outcome)
}
dat
}
# ------------------------------------------------------------------------------
#' @export
#' @rdname sim_classification
sim_logistic <- function(num_samples, eqn, correlation = 0, keep_truth = FALSE) {
sigma <- matrix(c(1, correlation, correlation, 1), 2, 2)
eqn <- rlang::get_expr(eqn)
check_equations(eqn)
dat <-
data.frame(MASS::mvrnorm(n = num_samples, c(0, 0), sigma)) %>%
stats::setNames(LETTERS[1:2]) %>%
dplyr::mutate(
.linear_pred = rlang::eval_tidy(eqn, data = .),
.linear_pred = as.numeric(.linear_pred),
.truth = stats::binomial()$linkinv(.linear_pred),
.rand = stats::runif(num_samples),
class = ifelse(.rand <= .truth, "one", "two"),
class = factor(class, levels = c("one", "two"))
) %>%
dplyr::select(-.rand) %>%
tibble::as_tibble()
if (!keep_truth) {
dat <- dat %>% dplyr::select(-.truth, -.linear_pred)
}
dat
}
# ------------------------------------------------------------------------------
#' @export
#' @rdname sim_classification
sim_multinomial <- function(num_samples, eqn_1, eqn_2, eqn_3, correlation = 0, keep_truth = FALSE) {
sigma <- matrix(c(1, correlation, correlation, 1), 2, 2)
eqn_1 <- rlang::get_expr(eqn_1)
eqn_2 <- rlang::get_expr(eqn_2)
eqn_3 <- rlang::get_expr(eqn_3)
purrr::map_lgl(list(eqn_1, eqn_2, eqn_3), check_equations)
dat <-
data.frame(MASS::mvrnorm(n = num_samples, c(0, 0), sigma)) %>%
stats::setNames(LETTERS[1:2]) %>%
dplyr::mutate(
.formula_1 = rlang::eval_tidy(eqn_1, data = .),
.formula_2 = rlang::eval_tidy(eqn_2, data = .),
.formula_3 = rlang::eval_tidy(eqn_3, data = .),
dplyr::across(c(dplyr::starts_with(".formula_")), ~ exp(.x))
)
probs <- as.matrix(dplyr::select(dat, dplyr::starts_with(".formula_")))
probs <- t(apply(probs, 1, function(x) x/sum(x)))
which_class <- function(x) which.max(stats::rmultinom(1, 1, x))
index <- apply(probs, 1, which_class)
lvls <- c("one", "two", "three")
dat$class <- factor(lvls[index], levels = lvls)
dat <- dat %>% dplyr::select(-dplyr::starts_with(".formula_"))
if (keep_truth) {
colnames(probs) <- paste0(".truth_", lvls)
probs <- tibble::as_tibble(probs)
dat <- dplyr::bind_cols(dat, probs)
}
tibble::as_tibble(dat)
}
# ------------------------------------------------------------------------------
check_equations <- function(x, expected = LETTERS[1:2]) {
used <- sort(all.vars(x))
its_fine <- length(setdiff(used, expected)) == 0
if (!its_fine) {
rlang::abort("The model equations should only use variables/objects `A` and `B`")
}
invisible(its_fine)
}
names0 <- function(num, prefix = "x") {
if (num < 1) {
rlang::abort("`num` should be > 0")
}
ind <- format(1:num)
ind <- gsub(" ", "0", ind)
paste0(prefix, ind)
}
|