File: leaf_id_flavia.Rd

package info (click to toggle)
r-cran-modeldata 1.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,592 kB
  • sloc: sh: 13; makefile: 2
file content (99 lines) | stat: -rw-r--r-- 3,563 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/leaf_id_flavia.R
\docType{data}
\name{leaf_id_flavia}
\alias{leaf_id_flavia}
\title{Leaf identification data (Flavia)}
\source{
Lakshika, Jayani PG, and Thiyanga S. Talagala. "Computer-aided interpretable
features for leaf image classification." \emph{arXiv preprint} arXiv:2106.08077
(2021).

\url{https://github.com/SMART-Research/leaffeatures_paper}
}
\value{
\item{leaf_id_flavia}{a data frame}
}
\description{
Image analysis of leaves to predict species.
}
\details{
From the original manuscript: "The Flavia dataset contains 1907 leaf images.
There are 32 different species and each has 50-77 images. Scanners and
digital cameras are used to acquire the leaf images on a plain background.
The isolated leaf images contain blades only, without a petiole. These leaf
images are collected from the most common plants in Yangtze, Delta,
China. Those leaves were sampled on the campus of the Nanjing University and
the Sun Yat-Sen arboretum, Nanking, China."

The reference below has details information on the features used for
prediction.

Columns:
\itemize{
\item \code{species}:  factor (32 levels)
\item \code{apex}:  factor (9 levels)
\item \code{base}:  factor (6 levels)
\item \code{shape}:  factor (5 levels)
\item \code{denate_edge}:  factor (levels: 'no' and 'yes')
\item \code{lobed_edge}:  factor (levels: 'no' and 'yes')
\item \code{smooth_edge}:  factor (levels: 'no' and 'yes')
\item \code{toothed_edge}:  factor (levels: 'no' and 'yes')
\item \code{undulate_edge}:  factor (levels: 'no' and 'yes')
\item \code{outlying_polar}:  numeric
\item \code{skewed_polar}:  numeric
\item \code{clumpy_polar}:  numeric
\item \code{sparse_polar}:  numeric
\item \code{striated_polar}:  numeric
\item \code{convex_polar}:  numeric
\item \code{skinny_polar}:  numeric
\item \code{stringy_polar}:  numeric
\item \code{monotonic_polar}:  numeric
\item \code{outlying_contour}:  numeric
\item \code{skewed_contour}:  numeric
\item \code{clumpy_contour}:  numeric
\item \code{sparse_contour}:  numeric
\item \code{striated_contour}:  numeric
\item \code{convex_contour}:  numeric
\item \code{skinny_contour}:  numeric
\item \code{stringy_contour}:  numeric
\item \code{monotonic_contour}:  numeric
\item \code{num_max_ponits}:  numeric
\item \code{num_min_points}:  numeric
\item \code{diameter}:  numeric
\item \code{area}:  numeric
\item \code{perimeter}:  numeric
\item \code{physiological_length}:  numeric
\item \code{physiological_width}:  numeric
\item \code{aspect_ratio}:  numeric
\item \code{rectangularity}:  numeric
\item \code{circularity}:  numeric
\item \code{compactness}:  numeric
\item \code{narrow_factor}:  numeric
\item \code{perimeter_ratio_diameter}:  numeric
\item \code{perimeter_ratio_length}:  numeric
\item \code{perimeter_ratio_lw}:  numeric
\item \code{num_convex_points}:  numeric
\item \code{perimeter_convexity}:  numeric
\item \code{area_convexity}:  numeric
\item \code{area_ratio_convexity}:  numeric
\item \code{equivalent_diameter}:  numeric
\item \code{eccentriciry}:  numeric
\item \code{contrast}:  numeric
\item \code{correlation_texture}:  numeric
\item \code{inverse_difference_moments}:  numeric
\item \code{entropy}:  numeric
\item \code{mean_red_val}:  numeric
\item \code{mean_green_val}:  numeric
\item \code{mean_blue_val}:  numeric
\item \code{std_red_val}:  numeric
\item \code{std_green_val}:  numeric
\item \code{std_blue_val}:  numeric
\item \code{correlation}:  numeric
}
}
\examples{
data(leaf_id_flavia)
str(leaf_id_flavia)

}