1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/leaf_id_flavia.R
\docType{data}
\name{leaf_id_flavia}
\alias{leaf_id_flavia}
\title{Leaf identification data (Flavia)}
\source{
Lakshika, Jayani PG, and Thiyanga S. Talagala. "Computer-aided interpretable
features for leaf image classification." \emph{arXiv preprint} arXiv:2106.08077
(2021).
\url{https://github.com/SMART-Research/leaffeatures_paper}
}
\value{
\item{leaf_id_flavia}{a data frame}
}
\description{
Image analysis of leaves to predict species.
}
\details{
From the original manuscript: "The Flavia dataset contains 1907 leaf images.
There are 32 different species and each has 50-77 images. Scanners and
digital cameras are used to acquire the leaf images on a plain background.
The isolated leaf images contain blades only, without a petiole. These leaf
images are collected from the most common plants in Yangtze, Delta,
China. Those leaves were sampled on the campus of the Nanjing University and
the Sun Yat-Sen arboretum, Nanking, China."
The reference below has details information on the features used for
prediction.
Columns:
\itemize{
\item \code{species}: factor (32 levels)
\item \code{apex}: factor (9 levels)
\item \code{base}: factor (6 levels)
\item \code{shape}: factor (5 levels)
\item \code{denate_edge}: factor (levels: 'no' and 'yes')
\item \code{lobed_edge}: factor (levels: 'no' and 'yes')
\item \code{smooth_edge}: factor (levels: 'no' and 'yes')
\item \code{toothed_edge}: factor (levels: 'no' and 'yes')
\item \code{undulate_edge}: factor (levels: 'no' and 'yes')
\item \code{outlying_polar}: numeric
\item \code{skewed_polar}: numeric
\item \code{clumpy_polar}: numeric
\item \code{sparse_polar}: numeric
\item \code{striated_polar}: numeric
\item \code{convex_polar}: numeric
\item \code{skinny_polar}: numeric
\item \code{stringy_polar}: numeric
\item \code{monotonic_polar}: numeric
\item \code{outlying_contour}: numeric
\item \code{skewed_contour}: numeric
\item \code{clumpy_contour}: numeric
\item \code{sparse_contour}: numeric
\item \code{striated_contour}: numeric
\item \code{convex_contour}: numeric
\item \code{skinny_contour}: numeric
\item \code{stringy_contour}: numeric
\item \code{monotonic_contour}: numeric
\item \code{num_max_ponits}: numeric
\item \code{num_min_points}: numeric
\item \code{diameter}: numeric
\item \code{area}: numeric
\item \code{perimeter}: numeric
\item \code{physiological_length}: numeric
\item \code{physiological_width}: numeric
\item \code{aspect_ratio}: numeric
\item \code{rectangularity}: numeric
\item \code{circularity}: numeric
\item \code{compactness}: numeric
\item \code{narrow_factor}: numeric
\item \code{perimeter_ratio_diameter}: numeric
\item \code{perimeter_ratio_length}: numeric
\item \code{perimeter_ratio_lw}: numeric
\item \code{num_convex_points}: numeric
\item \code{perimeter_convexity}: numeric
\item \code{area_convexity}: numeric
\item \code{area_ratio_convexity}: numeric
\item \code{equivalent_diameter}: numeric
\item \code{eccentriciry}: numeric
\item \code{contrast}: numeric
\item \code{correlation_texture}: numeric
\item \code{inverse_difference_moments}: numeric
\item \code{entropy}: numeric
\item \code{mean_red_val}: numeric
\item \code{mean_green_val}: numeric
\item \code{mean_blue_val}: numeric
\item \code{std_red_val}: numeric
\item \code{std_green_val}: numeric
\item \code{std_blue_val}: numeric
\item \code{correlation}: numeric
}
}
\examples{
data(leaf_id_flavia)
str(leaf_id_flavia)
}
|