1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#' @useDynLib ModelMetrics
#' @importFrom Rcpp sourceCpp
NULL
#' Test data
#'
#' @name testDF
#' @docType data
NULL
#' @title Multiclass Log Loss
#'
#' @description Calculated the multi-class log loss
#'
#' @param actual A vector of the labels. Can be \code{numeric, character, or factor}
#' @param predicted matrix of predicted values. Can be \code{matrix, data.frame}
#'
#' @export
mlogLoss <- function(actual, predicted){
if(inherits(actual, c('factor', 'character'))){
actual = as.numeric(as.factor(actual))
}
if(inherits(predicted, c('data.frame'))){
predicted = as.matrix(predicted)
}
eps <- 1e-15
predicted = pmax(pmin(predicted, 1 - eps), eps)
mlogLoss_(actual, predicted)
}
#' @title Multiclass Area Under the Curve
#'
#' @description Calculates the area under the curve for a binary classifcation model
#'
#' @param actual A vector of the labels. Can be \code{numeric, character, or factor}
#' @param predicted A data.frame of predicted values. Can be \code{matrix, data.frame}
#'
#'
#' @examples
#' setosa <- glm(I(Species == 'setosa') ~ Sepal.Length, data = iris, family = 'binomial')
#' versicolor <- glm(I(Species == 'versicolor') ~ Sepal.Length, data = iris, family = 'binomial')
#' virginica <- glm(I(Species == 'virginica') ~ Sepal.Length, data = iris, family = 'binomial')
#'
#' Pred <-
#' data.frame(
#' setosa = predict(setosa, type = 'response')
#' ,versicolor = predict(versicolor, type = 'response')
#' ,virginica = predict(virginica, type = 'response')
#' )
#'
#' Predicted = Pred/rowSums(Pred)
#' Actual = iris$Species
#'
#' mauc(Actual, Predicted)
#'
#' @export
mauc <- function(actual, predicted){
actual <- factor(actual)
Data <- data.frame(predicted, actual)
Outcomes <- length(unique(actual))
simpleAUC <- function(x){
# One-vs-all
y1 = levels(Data$actual)[x]
y <- as.numeric(Data[, "actual"] == y1)
prob <- Data[,x]
AUCs <- auc(y, prob)
return(AUCs)
}
AUCs <- sapply(1:Outcomes, simpleAUC)
list(mauc = mean(AUCs), auc = AUCs)
}
#' @title Confusion Matrix
#' @description Create a confusion matrix given a specific cutoff.
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @export
confusionMatrix <- function(actual, predicted, cutoff = .5){
confusionMatrix_(actual, predicted, cutoff)
}
#' @title Positive Predictive Value
#'
#' @description True Positives / (True Positives + False Positives)
#'
#' @aliases precision
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @examples
#' data(testDF)
#' glmModel <- glm(y ~ ., data = testDF, family="binomial")
#' Preds <- predict(glmModel, type = 'response')
#'
#' ppv(testDF$y, Preds, cutoff = 0)
#' precision(testDF$y, Preds, cutoff = 0)
#'
#' @export
ppv <- function(actual, predicted, cutoff = .5){
ppv_(actual, predicted, cutoff)
}
#' @export
precision <- function(actual, predicted, cutoff = .5){
ppv_(actual, predicted, cutoff)
}
#' @title Negative Predictive Value
#'
#' @description True Negatives / (True Negatives + False Negatives)
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @examples
#' data(testDF)
#' glmModel <- glm(y ~ ., data = testDF, family="binomial")
#' Preds <- predict(glmModel, type = 'response')
#'
#' npv(testDF$y, Preds, cutoff = 0)
#'
#' @export
npv <- function(actual, predicted, cutoff = .5){
npv_(actual, predicted, cutoff)
}
#' @title Recall, Sensitivity, tpr
#'
#' @aliases sensitivity tpr
#'
#' @description True Positives / (True Positives + False Negatives)
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @examples
#' data(testDF)
#' glmModel <- glm(y ~ ., data = testDF, family="binomial")
#' Preds <- predict(glmModel, type = 'response')
#'
#' recall(testDF$y, Preds, cutoff = 0)
#' sensitivity(testDF$y, Preds, cutoff = 0)
#' tpr(testDF$y, Preds, cutoff = 0)
#'
#' @export
recall <- function(actual, predicted, cutoff = .5){
recall_(actual, predicted, cutoff)
}
#' @export
sensitivity <- function(actual, predicted, cutoff = .5){
recall_(actual, predicted, cutoff)
}
#' @export
tpr <- function(actual, predicted, cutoff = .5){
recall_(actual, predicted, cutoff)
}
#' @title Specificity, True negative rate
#'
#' @aliases specificity tnr
#'
#' @description True Negatives / (True Negatives + False Positives)
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @examples
#' data(testDF)
#' glmModel <- glm(y ~ ., data = testDF, family="binomial")
#' Preds <- predict(glmModel, type = 'response')
#'
#' tnr(testDF$y, Preds, cutoff = 0)
#' specificity(testDF$y, Preds, cutoff = 0)
#'
#' @export
tnr <- function(actual, predicted, cutoff = .5){
tnr_(actual, predicted, cutoff)
}
#' @export
specificity <- function(actual, predicted, cutoff = .5){
tnr_(actual, predicted, cutoff)
}
#' @title F1 Score
#' @description Calculates the f1 score
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @export
f1Score <- function(actual, predicted, cutoff = .5){
f1Score_(actual, predicted, cutoff)
}
#' @title F Score
#' @description Calculates the F score and allows different specifications of the beta value (F0.5)
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#' @param beta the desired beta value (lower increases weight of precision over recall). Defaults to 1
#'
#' @export
fScore <- function(actual, predicted, cutoff = .5, beta = 1){
fScore_(actual, predicted, cutoff, beta)
}
#' @title Matthews Correlation Coefficient
#' @description Calculates the Matthews Correlation Coefficient
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @export
mcc <- function(actual, predicted, cutoff){
mcc_(actual, predicted, cutoff)
}
#' @title kappa statistic
#'
#' @description Calculates kappa statistic. Currently build to handle binary values in \code{actual} vector.
#'
#' @param actual A vector of the labels
#' @param predicted A vector of predicted values
#' @param cutoff A cutoff for the predicted values
#'
#' @export
kappa <- function(actual, predicted, cutoff = .5){
kappa_(actual, predicted, cutoff)
}
|