1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
### Definition and construction method for class `ModelEnv'
setMethod("initialize", signature = "ModelEnv",
definition = function(.Object) {
### a new environment: all data are stored here
.Object@env <- new.env()
### extract a variable names `which' from the environment
.Object@get <-
function(which) get(which, envir = .Object@env,
inherits = FALSE)
### set a variable
.Object@set <-
function(which, data) assign(which, data, .Object@env)
return(.Object)
}
)
### some utility methods for ModelEnv onjects
setMethod("show", signature = "ModelEnv",
definition = function(object) {
cat("\n")
cat("A", class(object), "with \n\n")
n <- NULL
if (has(object, "response")) {
cat(" response variable(s): ",
colnamesnum(object@get("response")), "\n")
n <- nrow(object@get("response"))
}
else if (has(object, "responseMatrix")) {
cat(" response matrix column(s): ",
colnamesnum(object@get("responseMatrix")), "\n")
n <- nrow(object@get("responseMatrix"))
}
if (has(object, "input")) {
cat(" input variable(s): ",
colnamesnum(object@get("input")), "\n")
n <- nrow(object@get("input"))
}
else if (has(object, "designMatrix")) {
cat(" design matrix column(s): ",
colnamesnum(object@get("designMatrix")), "\n")
n <- nrow(object@get("designMatrix"))
}
if (is.null(n))
cat(" no observations\n")
else
cat(" number of observations:", n, "\n")
if(length(object@hooks)>0){
for(n in 1:length(object@hooks)){
if(n==1)
cat(" hooks : ")
else
cat(" ")
cat(paste(names(object@hooks)[n],"(",
paste(names(object@hooks[[n]]), collapse=", "),
")", sep=""), "\n")
}
}
cat("\n")
})
## Utility function: return either names or number of columns
colnamesnum <- function(x)
{
if(is.null(colnames(x)))
return(ncol(x))
else
return(colnames(x))
}
setGeneric("has", function(object, which) standardGeneric("has"))
setMethod("has", signature(object = "ModelEnv", which = "character"),
definition = function(object, which) {
exists(which, envir = object@env, inherits = FALSE)
}
)
setGeneric("dimension", function(object, which) standardGeneric("dimension"))
setMethod("dimension", signature(object = "ModelEnv", which = "character"),
definition = function(object, which) {
if (has(object, which))
eval(parse(text = paste("dim(",which,")")) , envir = object@env)
else
NULL
}
)
setGeneric("empty", function(object) standardGeneric("empty"))
setMethod("empty", signature(object = "ModelEnv"),
definition = function(object) length(ls(object@env))==0)
###**********************************************************
setGeneric("clone", function(object, ...) standardGeneric("clone"))
## the set() method of ModelEnvFormula objects uses lexical scope on
## various bits and pieces, hence cloning currently returns only a
## ModelEnv object, which only has a trivial get method and no set
## method
setMethod("clone", signature = "ModelEnv",
definition = function(object, copydata = TRUE) {
z <- new(class(object))
if (extends(class(object), "ModelEnvFormula"))
z@formula <- object@formula
### call set and get from object, however, they work in z@env
### <FIXME> what about parent.frame() ???
z@set <- function(which = NULL, data = NULL, frame = parent.frame(),
envir = z@env)
object@set(which = which, data = data, frame = frame, env = envir)
z@get <- function(which, data = NULL, frame = parent.frame(),
envir = z@env)
object@get(which = which, data = data, frame = frame, env = envir)
### </FIXME>
if (copydata) {
for (name in ls(object@env))
assign(name, object@get(name), envir = z@env)
}
return(z)
})
setGeneric("subset", function(x, ...) standardGeneric("subset"))
setMethod("subset", signature = "ModelEnv",
definition = function(x, subset, clone = TRUE, ...)
{
MYSUBSET <- function(x, subset, ...){
if (is(x, "matrix"))
x[subset,,drop=FALSE]
else
subset(x, subset, ...)
}
z <- MEapply(x, MYSUBSET, clone=clone, subset=subset, ...)
if (!clone)
invisible(z)
else
return(z)
})
### dpp, fit and predict generics for StatModel objects
setGeneric("fit", function(model, data, ...) standardGeneric("fit"))
setMethod("fit", signature = signature(model = "StatModel",
data = "ModelEnv"),
definition = function(model, data, ...)
model@fit(data, ...)
)
setGeneric("dpp", function(model, ...) standardGeneric("dpp"))
setMethod("dpp", signature = "StatModel",
definition = function(model, ...)
model@dpp(...)
)
### don't want to redefine stats:::predict, but ...
Predict <- function(object, ...) {
if ("statmodel" %in% names(object)) {
if (is(object$statmodel, "StatModel"))
return(object$statmodel@predict(object, ...))
}
return(predict(object, ...))
}
|