1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
#' Letter summary of similarities and differences
#'
#' Convert a logical vector or a vector of p-values or a correlation or
#' distance matrix into a character-based display in which common characters
#' identify levels or groups that are not significantly different. Designed
#' for use with the output of functions like TukeyHSD, diststats, simint,
#' simtest, csimint, csimtestmultcomp, friedmanmc, kruskalmcpgirmess.
#'
#' Produces a "Letter-Based Representation of All- Pairwise Comparisons" as
#' described by Piepho (2004). (The present algorithm does NOT perform his
#' "sweeping" step.) \code{multcompLettersx} are wrapper of multcompLetters
#' that will reorder the levels of the data so that the letters appear in a
#' descending order of the mean. \code{mulcompletters3} is similar to
#' \code{multcompletters2} except that it uses vector names to separate and the
#' later has an formula interface. \code{multcompLetters4} will take a aov or
#' lm object and a comparison test and will produce all the letters for the
#' terms and interactions.
#'
#' @aliases multcompLetters multcompLetters2 multcompLetters3 multcompLetters4
#' @param x One of the following: (1) A square, symmetric matrix with row
#' names. (2) A vector with hyphenated names, which identify individual items
#' or factor levels after "strsplit". (3) An object of class "dist". If x (or
#' x[1]) is not already of class "logical", it is replaced with
#' do.call(compare, list(x, threshold)), which by default converts numbers
#' (typically p-values) less than 0.05 to TRUE and everything else to FALSE.
#' If x is a matrix, its diagonal must be or must convert to FALSE.
#' @param compare function or binary operator; not used if class(x) is
#' "logical".
#' @param threshold Second (reference) argument to "compare".
#' @param Letters Vector of distinct characters (or character strings) used to
#' connect levels that are not significantly different. They should be
#' recognizable when concatenated. The last element of "Letters" is used as a
#' prefix for a reuse of "Letters" if more are needed than are provided. For
#' example, with the default "Letters", if 53 distinct connection columns are
#' required, they will be "a", ..., "z", "A", ..., "Z", and ".a". If 54 are
#' required, the last one will be ".b". If 105 are required, the last one will
#' be "..a", etc. (If the algorithm generates that many distinct groups, the
#' display may be too busy to be useful, but the algorithm shouldn't break.)
#' @param reversed A logical value indicating whether the order of the letters
#' should be reversed. Defaults to FALSE.
#' @param formula The formula used to make the test (lm, aov, glm, etc.). Like
#' y ~ x.
#' @param data Data used to make the test.
#' @param y Value of the response variable.
#' @param z Categorical variables used in the test.
#' @param object An object of class aov or lm for the time being.
#' @param comp A object with multiple comparison or a function name to perform
#' a multiple comparison.
#' @param ... Extra arguments passed to multcompLetters.
#' @return An object of class 'multcompLetters', which is a list with the
#' following components: \item{Letters }{character vector with names = the
#' names of the levels or groups compared and with values = character strings
#' in which common values of the function argument "Letters" identify levels or
#' groups that are not significantly different (or more precisely for which the
#' corresponding element of "x" was FALSE or was converted to FALSE by
#' "compare"). } \item{monospacedLetters }{ Same as "Letters" but with spaces
#' so the individual grouping letters will line up with a monospaced type font.
#' } \item{LetterMatrix }{Logical matrix with one row for each level compared
#' and one column for each "Letter" in the "letter-based representation". The
#' output component "Letters" is obtained by concatenating the column names of
#' all columns with TRUE in that row. } multcompLetters4 will return a named
#' list with the terms containing a object of class 'multcompLetters' as
#' produced by \code{multcompLetters}.
#' @author Spencer Graves, Hans-Peter Piepho and Luciano Selzer
#' @seealso \code{\link{multcompBoxplot}} \code{\link{plot.multcompLetters}}
#' \code{\link{print.multcompLetters}} \code{\link{multcompTs}}
#' \code{\link{vec2mat}}
#' @references Piepho, Hans-Peter (2004) "An Algorithm for a Letter-Based
#' Representation of All-Pairwise Comparisons", Journal of Computational and
#' Graphical Statistics, 13(2)456-466.
#' @keywords dplot
#' @export
#' @examples
#'
#' ##
#' ## 1. a logical vector indicating signficant differences
#' ##
#' dif3 <- c(FALSE, FALSE, TRUE)
#' names(dif3) <- c("A-B", "A-C", "B-C")
#' dif3L <- multcompLetters(dif3)
#' dif3L
#' print(dif3L)
#' print(dif3L, TRUE)
#'
#' ##
#' ## 2. numeric vector indicating statistical significance
#' ##
#' dif4 <- c(.01, .02, .03, 1)
#' names(dif4) <- c("a-b", "a-c", "b-d", "a-d")
#' (diff4.T <- multcompLetters(dif4))
#'
#' (dif4.L1 <- multcompLetters(dif4,
#' Letters=c("*", ".")))
#' # "Letters" can be any character strings,
#' # but they should be recognizable when
#' # concatenated.
#'
#' ##
#' ## 3. distance matrix
#' ##
#' dJudge <- dist(USJudgeRatings)
#' dJl <- multcompLetters(dJudge, compare='>', threshold = median(dJudge))
#' # comparison of 43 judges; compact but undecipherable:
#' dJl
#'
#' x <- array(1:9, dim=c(3,3),
#' dimnames=list(LETTERS[1:3], NULL) )
#' d3 <- dist(x)
#' dxLtrs <- multcompLetters(d3, compare=">", threshold=2)
#'
#' d3d <- dist(x, diag=TRUE)
#' dxdLtrs <- multcompLetters(d3d, compare=">", threshold=2)
#'
#' \dontshow{stopifnot(}
#' all.equal(dxLtrs, dxdLtrs)
#' \dontshow{)}
#'
#' d3u <- dist(x, upper=TRUE)
#' dxuLtrs <- multcompLetters(d3d, compare=">", threshold=2)
#'
#' \dontshow{stopifnot(}
#' all.equal(dxLtrs, dxuLtrs)
#' \dontshow{)}
#'
#' ##
#' ## 4. cor matrix
#' ##
#' set.seed(4)
#' x100 <- matrix(rnorm(100), ncol=5,
#' dimnames=list(NULL, LETTERS[1:5]) )
#' cx <- cor(x100)
#' cxLtrs <- multcompLetters(abs(cx), threshold=.3)
#'
#'
#' ##
#' ##5. reversed
#' ##
#'
#' dif3 <- c(FALSE, FALSE, TRUE)
#' names(dif3) <- c("A-B", "A-C", "B-C")
#' dif3L <- multcompLetters(dif3)
#' dif3L.R <- multcompLetters(dif3, rev = TRUE)
#' dif3L
#' dif3L.R
#'
#'
#' ##
#' ##6. multcompletters2 usage
#'
#' experiment <- data.frame(treatments = gl(11, 20, labels = c("dtl", "ctrl", "treat1",
#' "treat2", "treatA2", "treatB", "treatB2",
#' "treatC", "treatD", "treatA1", "treatX")),
#' y = c(rnorm(20, 10, 5), rnorm(20, 20, 5), rnorm(20, 22, 5), rnorm(20, 24, 5),
#' rnorm(20, 35, 5), rnorm(20, 37, 5), rnorm(20, 40, 5), rnorm(20, 43, 5),
#' rnorm(20, 45, 5), rnorm(20, 60, 5), rnorm(20, 60, 5)))
#' exp_tukey <- TukeyHSD(exp_aov <- aov(y ~ treatments, data = experiment))
#' exp_letters1 <- multcompLetters(exp_tukey$treatments[,4])
#' exp_letters1
#' #Notice lowest mean treatments gets a "e"
#' #Ordered letters
#' multcompLetters2(y ~ treatments, exp_tukey$treatments[,"p adj"], experiment)
#' multcompLetters2(y ~ treatments, exp_tukey$treatments[,"p adj"], experiment, reversed = TRUE)
#'
#' ##7. multcompletters3 usage
#'
#' multcompLetters3("treatments", "y", exp_tukey$treatments[,"p adj"], experiment)
#'
#' ##8. multcompletters4 usage
#'
#'
#' multcompLetters4(exp_aov, exp_tukey)
#'
#'
"multcompLetters" <-
function(x, compare="<",
threshold=0.05, Letters=c(letters, LETTERS, "."),
reversed = FALSE){
##
## 1. Covert to logical
##
x.is <- deparse(substitute(x))
if(any(class(x)=="dist"))x <- as.matrix(x)
if(!is.logical(x))
x <- do.call(compare, list(x, threshold))
##
## 2. Create array of distinct pairs
##
dimx <- dim(x)
{
if((length(dimx)==2) && (dimx[1]==dimx[2])){
Lvls <- dimnames(x)[[1]]
if(length(Lvls)!=dimx[1])
stop("Names requred for ", x.is)
else{
# Create a matrix with 2 columns
# with the names of all pairs
x2. <- t(outer(Lvls, Lvls, paste,
sep=""))
x2.n <- outer(Lvls, Lvls,
function(x1, x2)nchar(x2))
x2.2 <- x2.[lower.tri(x2.)]
x2.2n <- x2.n[lower.tri(x2.n)]
x2a <- substring(x2.2, 1, x2.2n)
x2b <- substring(x2.2, x2.2n+1)
x2 <- cbind(x2a, x2b)
x <- x[lower.tri(x)]
}
}
else{
namx <- names(x)
if(length(namx)!=length(x))
stop("Names required for ", x.is)
x2 <- vec2mat2(namx)
Lvls <- unique(as.vector(x2))
}
}
##
## 3. Find the names of the levels
##
n <- length(Lvls)
# Generate an initial column
LetMat <- array(TRUE, dim=c(n, 1),
dimnames=list(Lvls, NULL))
##
## 4. How many distinct pairs?
##
k2 <- sum(x)
if(k2==0){
Ltrs <- rep(Letters[1], n)
names(Ltrs) <- Lvls
dimnames(LetMat)[[2]] <- Letters[1]
return(list(Letters=Ltrs,
LetterMatrix=LetMat))
}
##
## 4. At last 2 levels are different:
## insert & absorb
##
distinct.pairs <- x2[x,,drop=FALSE]
absorb <- function(A.){
# Do the work in a recursive function:
# Delete any column for which the TRUE
# connections are a subset of another column
k. <- dim(A.)[2]
if(k.>1){ #i. <- 1; j. <- 2
for(i. in 1:(k.-1))for(j. in (i.+1):k.){
if(all(A.[A.[, j.], i.])){
#### drop a redundant column and recurse ###
A. <- A.[, -j., drop=FALSE]
return(absorb(A.))
}
else {
if(all(A.[A.[, i.], j.])){
#### drop a redundant column and recurse ###
A. <- A.[, -i., drop=FALSE]
return(absorb(A.))
}
}
}
}
#### end internal function absorb #######
A.
}
# Now apply this function
for(i in 1:k2){ # i <- 1+i
# Process the distinct differences one at a time
# Insert i <- 1+i
# Are (distinct) levels Td2[i, 1] and Td2[i,2]
# connected in any columns of A?
dpi <- distinct.pairs[i,]
ijCols <- (LetMat[dpi[1],] & LetMat[dpi[2], ])
if(any(ijCols)){
# "Insert": Break this connection
A1 <- LetMat[, ijCols, drop=FALSE]
A1[dpi[1],] <- FALSE
LetMat[dpi[2], ijCols] <- FALSE
LetMat <- cbind(LetMat, A1)
# Absorb A. <- A
LetMat <- absorb(LetMat)
}
}
##
## 5. Sort the columns for visual appeal
##
sortCols <- function(B){
firstRow <- apply(B, 2, function(x)which(x)[1])
B <- B[, order(firstRow)]
# If ties, sort submatrices
firstRow <- apply(B, 2, function(x)which(x)[1])
reps <- (diff(firstRow)==0)
if(any(reps)){
# Break ties
nrep <- table(which(reps))
irep <- as.numeric(names(nrep))
k <- dim(B)[1]
for(i in irep){
i. <- i:(i+nrep[as.character(i)])
j. <- (firstRow[i]+1):k
B[j., i.] <- sortCols(B[j., i., drop=FALSE])
}
}
#### end internal function sortCols #######
B
}
LetMat. <- sortCols(LetMat)
### Should the letters go in the reversed order?
if(reversed) LetMat. <- LetMat.[ ,rev(1:ncol(LetMat.))]
# DON'T Sweep
#...
##
## 6. Create "Letters" for column names
##
k.ltrs <- dim(LetMat.)[2]
makeLtrs <- function(kl, ltrs=Letters){
kL <- length(ltrs)
if(kl<kL)return(ltrs[1:kl])
ltrecurse <- c(paste(ltrs[kL], ltrs[-kL],
sep=""), ltrs[kL])
c(ltrs[-kL], makeLtrs(kl-kL+1,
ltrecurse))
}
Ltrs <- makeLtrs(k.ltrs, Letters)
dimnames(LetMat.)[[2]] <- Ltrs
##
## 7. Create simple summaries
##
LetVec <- rep(NA, n)
names(LetVec) <- Lvls
for(i in 1:n)
LetVec[i]<- paste(Ltrs[LetMat.[i, ]],
collapse="")
nch.L <- nchar(Ltrs)
# To allow for multicharacter "Letters", create
# a vector of blanks with the right number
# of characters for each.
blk.L <- rep(NA, k.ltrs)
for(i in 1:k.ltrs)
blk.L[i] <- paste(rep(" ", nch.L[i]), collapse="")
# Now create monospacedLetters:
monoVec <- rep(NA, n)
names(monoVec) <- Lvls
for(j in 1:n){
ch2 <- blk.L
if(any(LetMat.[j,]))
ch2[LetMat.[j,]] <- Ltrs[LetMat.[j,]]
monoVec[j] <- paste(ch2, collapse="")
}
##
## 8. done
##
InsertAbsorb <- list(Letters=LetVec,
monospacedLetters=monoVec,
LetterMatrix=LetMat.)
class(InsertAbsorb) <- "multcompLetters"
InsertAbsorb
}
#' @export
#' @describeIn multcompLetters
"multcompLetters2" <-
function (formula, x, data, ...) {
#Convert formula to character, get rid of "~"
fm <- as.character(formula)
fm <- fm[-1]
#Split char vector with ":" as this points an
#interaction and is not included in the data
#per se
fm <- strsplit(fm, ":", fixed = TRUE)
y.z <- tapply(data[,fm[[1]]], data[,fm[[2]]],
function(x) do.call(mean, list(x=x)))
oz <- order(y.z, decreasing= T )
#This is to handle interactions
if (length(fm[[2]] > 1)) {
Lvls <- levels(interaction(data[,fm[[2]]], sep = ":"))[oz]
} else {
Lvls <- levels(data[,fm[[2]]])[oz]
}
value <- vec2mat(x)
value <- value[Lvls, Lvls]
multcompLetters(value, ...)
}
#' @export
#' @describeIn multcompLetters create a compact letters display and order the
#' letters
"multcompLetters3" <-
function (z, y , x, data, ...) {
y.z <- tapply(data[, y], data[, z],
function(x) do.call(mean, list(x=x)))
oz <- order(y.z, decreasing= T )
#This is to handle interactions
if (length(z > 1)) {
Lvls <- levels(interaction(data[, z], sep = ":"))[oz]
} else {
Lvls <- levels(data[, z])[oz]
}
value <- vec2mat(x)
value <- value[Lvls, Lvls]
multcompLetters(value, ...)
}
#' @export
#' @describeIn multcompLetters create a compact letters display using a aov object
#'
"multcompLetters4" <-
function (object, comp, ...) {
#Extract needed data from object
formula <- terms(object)
Terms <- colnames(attr(terms(object), "factors"))
data <- model.frame(object)
fm <- as.character(formula)
fm <- fm[-1]
fms <- list()
for (i in 1:length(Terms)){
fms[[i]] <- formula(paste(fm[1], "~", Terms[i]))
}
names(fms) <- Terms
if(is.character(comp) | is.symbol(comp)) {
comp <- match.fun(comp)
comp <- comp(object)
}
comp <- extract_p(comp)
ans <- list()
for(i in 1:length(Terms)){
ans[[i]] <- list(formula = fms[[i]], p = comp[[i]])
}
names(ans) <- Terms
lapply(ans, function(x) multcompLetters2(x$formula, x$p, data, ...))
}
|