File: multcompTs.R

package info (click to toggle)
r-cran-multcompview 0.1-10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 268 kB
  • sloc: makefile: 2
file content (174 lines) | stat: -rw-r--r-- 6,384 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#' "T" depiction of undifferentiated classes
#' 
#' Convert a logical vector or a vector of p-values or a correlation or
#' distance matrix into a matrix with an associated visual display to show
#' whether the differences between items exceed a threshold.  Designed for use
#' with the output of functions like TukeyHSD, diststats, simint, simtest,
#' csimint, csimtestmultcomp, friedmanmc, kruskalmcpgirmess.
#' 
#' Produces a matrix of class "multcompTs", describing the "undifferentiated
#' classes" that identify the other factor levels or items that are not
#' distinct or not significantly different from the "base" of the "T"; if two
#' or more levels have the same pattern of significant differences, the two are
#' combined into one "T" with two "bases".  The resulting T's are similar to
#' the "undifferentiated classes" discussed by Donaghue (2004).
#' 
#' @param x One of the following: (1) A square, symmetric matrix with row
#' names.  (2) A vector with hyphenated names, which identify individual items
#' or factor levels after "strsplit(..., '-')".  (3) An object of class "dist".
#' 
#' If x (or x[1]) is not already of class "logical", it is replaced with
#' do.call(compare, list(x, threshold)), which by default converts numbers
#' (typically p-values) less than 0.05 to TRUE and everything else to FALSE.
#' If x is a matrix, its diagonal must be or must convert to FALSE.
#' @param compare function or binary operator; not used if class(x) is
#' "logical".
#' @param threshold Second (reference) argument to "compare".
#' @param sep Concatenation character for names of objects with identical
#' similarity / dissimilarity patterns.  The output of multcompTs is matrix for
#' which the number of rows = (number of columns + number of uses of the "sep"
#' character).
#' @return An object of class "multcompTs", which is a matrix of values -1, 0,
#' 1, with one row for each level compared and one column for each "T", read as
#' follows: 1 = base of the "T" represented by that column, 0 = level(s) not
#' significantly different, and (-1) = levels(s) significantly different.  If
#' two or more levels have the same pattern of significant and insignificant
#' differences, they are combined into a single column that can be represented
#' by a "T" with multiple bases.  The column name will be a character string
#' concatenating all row names with "1" in that column separated by the "sep"
#' character.  Thus, the matrix should have as many 1's as it has rows.  Also,
#' the lower triangular portion should have as many "-1's" as there are "TRUE"
#' (e.g., significant) differences among the comparisons.
#' @author Spencer Graves and Hans-Peter Piepho
#' @seealso \code{\link{multcompBoxplot}} \code{\link{multcompLetters}}
#' \code{\link{plot.multcompTs}} \code{\link{vec2mat}} \code{\link{dist}}
#' @references John R. Donaghue (2004) "Implementing Shaffer's multiple
#' comparison procedure for a large number of groups", pp. 1-23 in Benjamini,
#' Bretz and Sarkar (eds) Recent Developments in Multiple Comparison Procedures
#' (Institute of Mathematical Statistics Lecture Notes-Monograph Series vol.
#' 47)
#' 
#' Spencer Graves and Hans-Peter Piepho (2006) "Simple Visualizations of Paired
#' Comparisons", \href{../doc/VisualizingPairedComparisons.pdf}{\code{vignette("VisualizingPairedComparisons", package = "multcompView")}}
#' 
#' @keywords dplot
#' @export
#' @examples
#' 
#' ##
#' ## 0.  Conference presentation comparing Ts and Letters
#' ##
#' dir(system.file('doc', package='multcompView'),
#'     pattern='\\.pdf$', full.name=TRUE)
#' 
#' ##
#' ## 1.  logical vector indicating different pairs
#' ##
#' dif3 <- c(FALSE, FALSE, TRUE)
#' names(dif3) <- c("a-b", "a-c", "b-c")
#' multcompTs(dif3)
#' 
#' ##
#' ## 2.  numeric vector indicating statistical significance
#' ##
#' dif4 <- c(.01, .02, .03, 1)
#' names(dif4) <- c("a-b", "a-c", "b-d", "a-d")
#' (diff4.T <- multcompTs(dif4))
#' plot(diff4.T)
#' 
#' ##
#' ## 3.  Distance matrix
#' ##
#' dJudge <- dist(USJudgeRatings)
#' dJt <- multcompTs(dJudge, compare='>', threshold = median(dJudge))
#' # comparison of 43 judges;  compact but undecipherable:
#' plot(dJt, cex.axis=.5)
#' 
#' x <- array(1:9, dim=c(3,3),
#'    dimnames=list(LETTERS[1:3], NULL) )
#' d3 <- dist(x)
#' dxTs <- multcompTs(d3, compare=">", threshold=2)
#' plot(dxTs)
#' 
#' d3d <- dist(x, diag=TRUE)
#' dxdTs <- multcompTs(d3d, compare=">", threshold=2)
#' 
#' \dontshow{stopifnot(}
#' all.equal(dxTs, dxdTs)
#' \dontshow{)}
#' 
#' d3u <- dist(x, upper=TRUE)
#' dxuTs <- multcompTs(d3d, compare=">", threshold=2)
#' 
#' \dontshow{stopifnot(}
#' all.equal(dxTs, dxuTs)
#' \dontshow{)}
#' 
#' ##
#' ## 4.  cor matrix
#' ##
#' set.seed(4)
#' x100 <- matrix(rnorm(100), ncol=5,
#'                dimnames=list(NULL, LETTERS[1:5]) )
#' cx <- cor(x100)
#' cxTs <- multcompTs(abs(cx), threshold=.3)
#' plot(cxTs)
#' 
#' 
"multcompTs" <-
function(x, compare="<",
             threshold=0.05, sep="."){
##
## 1.  Covert to logical
##
  if(any(class(x) == "dist"))x <- as.matrix(x)
  if(!is.logical(x))
    x <- do.call(compare, list(x, threshold))
##
## 2.  Convert to a symmetric matrix
##  
  x. <- vec2mat(x)
  if(any(diag(x.)))
    stop("Diag(x) must be or translate to FALSE;",
         " x = ", paste(x, collapse=", "))
##  
## 3.  Code insignificance as 0
##     and significance as (-1)  
##       
  k <- dim(x.)[1]
  x1 <- (1+x.)
  Dif <- array(c(0, -1)[x1], dim=c(k,k),
      dimnames=dimnames(x.))
  diag(Dif) <- 1
##
## 4.  To find recodes 0's as 1
##     then duplicate columns will
##     have inner product = k  
##
  dup.5 <- array(c(1, -1)[x1], dim=c(k,k),
                 dimnames=dimnames(x.))
# 
  Dup <- (crossprod(dup.5)==k)
##
## 5.  Look for dups only in the upper triangle
##     and drop all that are found
##  
  Dup[lower.tri(Dup, diag=TRUE)] <- FALSE
  dup.i <- which(colSums(Dup)>0)
  if(length(dup.i)>0){
    for(i in dup.i){
      j.i <- which(Dup[,i])[1]
      Dif[i, j.i] <- 1
      colNms <- dimnames(Dif)[[2]]
      j.i.Nm <- paste(colNms[c(j.i, i)], collapse=sep)
      dimnames(Dif)[[2]][j.i] <- j.i.Nm
    }
    Dif <- Dif[, -dup.i, drop=FALSE]
  }
##
## 6.  Done
##  
  class(Dif) <- "multcompTs"
  Dif
}