1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
## The multitaper R package
## Multitaper and spectral analysis package for R
## Copyright (C) 2011 Karim Rahim
##
## Written by Karim Rahim and Wesley S. Burr.
##
## This file is part of the multitaper package for R.
## http://cran.r-project.org/web/packages/multitaper/index.html
##
## The multitaper package is free software: you can redistribute it and
## or modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 2 of the
## License, or any later version.
##
## The multitaper package is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with multitaper. If not, see <http://www.gnu.org/licenses/>.
##
## If you wish to report bugs please contact the author:
##
## Karim Rahim
## karim.rahim@gmail.com
##
##############################################################
##
## spec.mtm
##
## Wrapper routine for .spec.mtm.dpss and .spec.mtm.sine.
##
##############################################################
spec.mtm <- function(timeSeries,
nw=4.0,
k=7,
nFFT="default",
taper=c("dpss"),
centre=c("Slepian"),
dpssIN=NULL,
returnZeroFreq=TRUE,
Ftest=FALSE,
jackknife=FALSE,
jkCIProb=.95,
adaptiveWeighting=TRUE,
maxAdaptiveIterations=100,
plot=TRUE,
na.action=na.fail,
returnInternals=FALSE,
sineAdaptive=FALSE,
sineSmoothFact=0.2,
dtUnits=c("default"),
deltat=NULL,
...) {
series <- deparse(substitute(timeSeries))
taper <- match.arg(taper,c("dpss","sine"))
centre <- match.arg(centre,c("Slepian","arithMean","trimMean","none"))
dtUnits <- match.arg(dtUnits,c("second","hour","day","month","year","default"))
## deal with depreciated parameter dT is changed to deltat
## we strip dT before plotting in plotsHelper.R
## to prevent it getting passed to plot
deltaT <- NULL
if(!missing(deltat)) {
deltaT <- deltat
}
dT <- match.call(expand.dots = )$dT
if(missing(deltat) && !is.null(dT)) {
warning("dT has been depreciated. Use either deltat or input a time series object.")
deltaT <- dT
}
if( (taper=="sine") && is.complex(timeSeries)) {
stop("Sine tapering not implemented for complex time series.")
}
if( (taper=="sine") && jackknife) {
warning("Cannot jackknife over sine tapers.")
jackknife <- FALSE
}
if( (taper=="sine") && Ftest) {
warning("Cannot compute Ftest over sine tapers.")
Ftest <- FALSE
}
if( (taper=="sine") && !returnZeroFreq) {
returnZeroFreq = TRUE
warning("returnZeroFreq must be TRUE for sine taper option.")
}
if( (taper=="sine") && sineSmoothFact > 0.5) {
warning("Smoothing Factor > 0.5 is very high!")
}
## Addtional warnings to make clear that multitaper without adaptive weighting is currently only implemented in this package for real data without jackknife CI.
if( adaptiveWeighting==FALSE) {
if( jackknife==TRUE) {
adaptiveWeighting <- TRUE
warning("Jackknife estimates are only implemented with adaptive weighting, and adaptive weighting has been turned on.")
} else if ( is.complex(timeSeries) ) {
adaptiveWeighting <- TRUE
warning("Multitaper estimates for complex time series are only implemented with adaptive weighting, and adaptive weighting has been turned on.")
}
}
dtTmp <- NULL
## warning for deltaT missing: makes all frequency plots incorrect
if(!is.ts(timeSeries) && is.null(deltaT)) {
warning("Time series is not a ts object and deltat is not set. Frequency array and axes may be incorrect.")
}
if(!is.ts(timeSeries)) {
if(!is.complex(timeSeries)) {
timeSeries <- as.double(as.ts(timeSeries))
}
} else {
## Order matters here, because as.double breaks the ts() class
dtTmp <- deltat(timeSeries)
if(!is.complex(timeSeries)) {
timeSeries <- as.double(timeSeries)
}
}
## in responese to delta T bug July 2, 2013
## modified to remove dT
if(is.null(deltaT)) {
if(!is.null(dtTmp)) {
deltaT <- dtTmp
} else{
deltaT <- 1.0
}
}
n <- length(timeSeries)
if(taper=="dpss") {
stopifnot(nw >= 0.5, k >= 1, n > 8)
## replace stop if not with warning.
## the following was also in stopif not:
## nw <= 500, k <= 1.5+2*nw)
if( nw > 500) {
warning("nw > 500")
}
if( k > 1.5 * 2*nw ) {
warning("k > 1.5+2*nw")
}
if (nw/n > 0.5) {
warning("half-bandwidth parameter (w) is greater than 1/2")
}
if(k==1) {
Ftest=FALSE
jackknife=FALSE
}
} else {
stopifnot(k <= n, k >= 1, n > 8)
}
na.action(timeSeries)
if(!is.complex(timeSeries)) {
sigma2 <- var(timeSeries) * (n-1)/n
} else {
sigma2 <- var(Re(timeSeries)) * (n-1)/n + var(Im(timeSeries)) * (n-1)/n
}
if(nFFT == "default") {
nFFT <- 2* 2^ceiling(log2(n))
} else {
stopifnot(is.numeric(nFFT))
}
stopifnot(nFFT >= n)
## convert time-series to zero-mean by one of three methods, if set; default is Slepian
if(centre=="Slepian") {
if(taper=="dpss") {
timeSeries <- centre(timeSeries, nw=nw, k=k, deltaT=deltaT)
} else { # edge case: sine taper, set initial k, but too high for default nw=4.0
timeSeries <- centre(timeSeries, nw=5.0, k=8, deltaT=deltaT)
}
} else if(centre=="arithMean") {
timeSeries <- centre(timeSeries, trim=0)
} else if(centre=="trimMean") {
timeSeries <- centre(timeSeries, trim=0.10)
}
if(taper=="dpss") {
mtm.obj <- .spec.mtm.dpss(timeSeries=timeSeries,
nw=nw, k=k, nFFT=nFFT,
dpssIN=dpssIN, returnZeroFreq=returnZeroFreq,
Ftest=Ftest, jackknife=jackknife, jkCIProb=jkCIProb,
adaptiveWeighting = adaptiveWeighting,
maxAdaptiveIterations=maxAdaptiveIterations,
returnInternals=returnInternals,
n=n, deltaT=deltaT, sigma2=sigma2, series=series,
dtUnits=dtUnits, ...)
} else if(taper=="sine") {
mtm.obj <- .spec.mtm.sine(timeSeries=timeSeries, k=k, sineAdaptive=sineAdaptive,
nFFT=nFFT, dpssIN=dpssIN, returnZeroFreq=returnZeroFreq,
returnInternals=FALSE, n=n, deltaT=deltaT, sigma2=sigma2,
series=series,maxAdaptiveIterations=maxAdaptiveIterations,
smoothFact=sineSmoothFact, dtUnits=dtUnits, ...)
}
if(plot) {
plot.mtm(mtm.obj, jackknife=jackknife, ...)
return(invisible(mtm.obj))
} else {
return(mtm.obj)
}
}
##############################################################
##
## .spec.mtm.dpss
##
## Computes multitaper spectrum using Slepian tapers
## References:
## Percival and Walden "Spectral Analysis
## for Physical Applications" 1993 and associated LISP code
##
## Thomson, D.J. Spectrum Estimation and Harmonic Analysis,
## Proceedings of the IEEE, 1982 and associated Fortran code
##
##############################################################
.spec.mtm.dpss <- function(timeSeries,
nw,
k,
nFFT,
dpssIN,
returnZeroFreq,
Ftest,
jackknife,
jkCIProb,
adaptiveWeighting,
maxAdaptiveIterations,
returnInternals,
n,
deltaT,
sigma2,
series,
dtUnits,
...) {
# Complex check case
if(is.complex(timeSeries)) {
if(!returnZeroFreq) {
returnZeroFreq <- 1
warning("Cannot set returnZeroFreq to 0 for complex time series.")
}
}
dw <- NULL
ev <- NULL
receivedDW <- TRUE
if(!.is.dpss(dpssIN)) {
receivedDW <- FALSE
dpssIN <- dpss(n, k, nw=nw, returnEigenvalues=TRUE)
dw <- dpssIN$v*sqrt(deltaT)
ev <- dpssIN$eigen
}
else {
dw <- .dpssV(dpssIN)
ev <- .dpssEigen(dpssIN)
if(all(is.null(ev))) {
ev <- dpssToEigenvalues(dw, nw) }
dw <- dw*sqrt(deltaT)
}
nFreqs <- nFFT %/% 2 + as.numeric(returnZeroFreq)
offSet <- if(returnZeroFreq) 0 else 1
# Note that the frequency axis is set by default to unit-less
# scaling as 0 through 0.5 cycles/period. The user parameter
# dtUnits modifies this scaling in the plot.mtm function.
scaleFreq <- 1 / as.double(nFFT * deltaT)
swz <- NULL ## Percival and Walden H0
ssqswz <- NULL
swz <- apply(dw, 2, sum)
if(k >= 2) {
swz[seq(2,k,2)] <- 0
}
ssqswz <- as.numeric(t(swz)%*%swz)
taperedData <- dw * timeSeries
nPadLen <- nFFT - n
if(!is.complex(timeSeries)) {
paddedTaperedData <- rbind(taperedData, matrix(0, nPadLen, k))
} else {
paddedTaperedData <- rbind(taperedData, matrix(complex(0,0), nPadLen, k))
}
cft <- mvfft(paddedTaperedData)
if(!is.complex(timeSeries)) {
cft <- cft[(1+offSet):(nFreqs+offSet),]
} else {
cft <- rbind(cft[(nFreqs+offSet+1):nFFT,],cft[(1+offSet):(nFreqs+offSet),])
}
sa <- abs(cft)^2
if(!is.complex(timeSeries)) {
resultFreqs <- ((0+offSet):(nFreqs+offSet-1))*scaleFreq
} else {
resultFreqs <- (-(nFreqs-1):(nFreqs-2))*scaleFreq
}
adaptive <- NULL
jk <- NULL
PWdofs <- NULL
if(!jackknife) {
if(!is.complex(timeSeries)) {
adaptive <- .mw2wta(sa, nFreqs, k, sigma2, deltaT, ev)
} else {
adaptive <- .mw2wta(sa, nFFT, k, sigma2, deltaT, ev)
}
} else {
stopifnot(jkCIProb < 1, jkCIProb > .5)
if(!is.complex(timeSeries) & adaptiveWeighting) {
adaptive <- .mw2jkw(sa, nFreqs, k, sigma2, deltaT, ev)
} else {
adaptive <- .mw2jkw(sa, nFFT, k, sigma2, deltaT, ev)
}
scl <- exp(qt(jkCIProb,adaptive$dofs)*
sqrt(adaptive$varjk))
upperCI <- adaptive$s*scl
lowerCI <- adaptive$s/scl
minVal = min(lowerCI)
maxVal = max(upperCI)
jk <- list(varjk=adaptive$varjk,
bcjk=adaptive$bcjk,
sjk=adaptive$sjk,
upperCI=upperCI,
lowerCI=lowerCI,
maxVal=maxVal,
minVal=minVal)
}
## Short term solution to address bug noted by Lenin Castillo noting that adaptive weights are not properly turned off (Karim 2017).
resSpec <- NULL
dofVal <- NULL
if(!adaptiveWeighting) {
resSpec <- apply(sa, 1, mean)
dofVal <- 2*k
} else {
resSpec <- adaptive$s
dofVal <- adaptive$dofs
}
ftestRes <- NULL
if(Ftest) {
if(is.null(swz)) {
swz <- apply(dw, 2, sum)
}
ftestRes <- .HF4mp1(cft,
swz,
k,
ssqswz)
}
eigenCoef1 <- NULL
wtCoef1 <- NULL
if(returnInternals) {
eigenCoef1 <- cft
if(adaptiveWeighting) {
wtCoef1 <- sqrt(adaptive$wt)
}
}
auxiliary <- list(dpss=dpssIN,
eigenCoefs=eigenCoef1,
eigenCoefWt=wtCoef1,
nfreqs=nFreqs,
nFFT=nFFT,
jk=jk,
Ftest=ftestRes$Ftest,
cmv=ftestRes$cmv,
dofs=dofVal,
nw=nw,
k=k,
deltaT=deltaT,
dtUnits=dtUnits,
taper="dpss")
## Thomson, D.J. Spectrum Estimation and Harmonic Analysis,
## Proceedings of the IEEE, 1982.
## note that the weights are squared, they are |d_k(f)^2 from equation
## (5.4)
## These weights correspond to Thomoson's 1982 Fortran code.
## dof fix for one taper, only value.
if(k==1) {
auxiliary$dofs <- 2
}
spec.out <- list(origin.n=n,
method="Multitaper Spectral Estimate",
pad= nFFT - n,
spec=resSpec,
freq=resultFreqs,
series=series,
adaptive=adaptiveWeighting,
mtm=auxiliary)
class(spec.out) <- c("mtm", "spec")
if(Ftest) {
class(spec.out) <- c("mtm", "Ftest", "spec")
}
return(spec.out)
}
#########################################################################
##
## spec.mtm.sine
##
## Computes multitaper spectrum estimate using sine tapers, as in
##
## Riedel, Kurt S. and Sidorenko, Alexander, Minimum Bias Multiple
## Taper Spectral Estimation. IEEE Transactions on Signal Processing,
## Vol. 43, No. 1, January 1995.
##
## Algorithm implementation based on previous work by:
## German Prieto, Universidad de los Andes
## via \texttt{mtsepc}, a F90 package that can be found at
## http://wwwprof.uniandes.edu.co/~gprieto/software/mwlib.html
##
## and
##
## Robert L. Parker, Scripps Institution of Oceanography
## via \texttt{psd.f}, a F77 program that can be found at
## http://igppweb.ucsd.edu/~parker/Software/Source/psd.f
##
#########################################################################
.spec.mtm.sine <- function(timeSeries,
nFFT,
k,
sineAdaptive,
dpssIN,
returnZeroFreq=TRUE,
n,
deltaT,
dtUnits,
sigma2,
series=series,
maxAdaptiveIterations,
smoothFact,
...) {
dw <- NULL
receivedDW <- TRUE
if(!.is.dpss(dpssIN)) {
receivedDW <- FALSE
dpssIN <- sineTaper(n, k)
dw <- dpssIN$v
}
else {
dw <- .dpssV(dpss)
}
# returnZeroFreq forced to TRUE, offset = 0
# NOTE: sine tapers produce nFFT/4 unique results; need to scale nFFT and nFreqs accordingly
nFFT <- nFFT*2
nFreqs <- nFFT %/% 4 + as.numeric(returnZeroFreq)
offSet <- if(returnZeroFreq) 0 else 1
scaleFreq <- 1 / as.double(nFFT/2 * deltaT)
resultFreqs <- ((0+offSet):(nFreqs+offSet-1))*scaleFreq
nPadLen <- nFFT - n
df <- 1/as.double(nFFT*deltaT)
# compute a single FFT; since we are using sine tapers, this is all we need
ones <- matrix(1,n,1)
paddedData<- rbind(timeSeries*ones, matrix(0, nPadLen, 1))
cft <- mvfft(paddedData)
# constant number of tapers, or adaptive?
spec <- as.double(matrix(0,1,nFreqs))
if(!sineAdaptive) { # constant k tapers
spec <- (.qsF(nFreqs=nFreqs,nFFT=nFFT,k=k,cft=cft,useAdapt=FALSE,kadapt=c(1)))$spec
dofs <- NULL
} else { # adaptively weighted tapers
initTaper <- ceiling(3.0 + sqrt(smoothFact*n)/5.0);
# pilot estimate of S
spec0 <- (.qsF(nFreqs=nFreqs,nFFT=nFFT,k=k,cft=cft,useAdapt=FALSE,kadapt=c(1)))$spec
out <- .adaptSine (ntimes=maxAdaptiveIterations,
k=initTaper,
nFreqs=nFreqs,
sx=spec0,
nFFT=nFFT,
cft=cft,
df=df,
fact=smoothFact)
spec <- out$spec;
dofs <- out$kadapt;
} # end of adaptive logic
# normalize spectrum
const <- var(timeSeries)/sum(spec)/df
specFinal <- const*spec
## set up return object
if(sineAdaptive) {
method = "Sine-Taper Multitaper Spectrum (adaptive)"
} else {
method = paste("Sine-Taper Multitaper Spectrum (k=",k,")",sep="")
}
auxiliary <- list(dpss=dpssIN,
eigenCoefs=NULL,
eigenCoefWt=NULL,
nfreqs=nFreqs,
nFFT=nFFT,
jk=NULL,
Ftest=NULL,
cmv=NULL,
dofs=dofs,
nw=NULL,
k=k,
deltaT=deltaT,
dtUnits=dtUnits,
taper="sine")
spec.out <- list(origin.n=n,
method=method,
pad= nFFT - n,
spec=specFinal,
spec = NULL,
freq=resultFreqs,
series=series,
mtm=auxiliary)
class(spec.out) <- c("mtm", "spec")
return(spec.out)
}
#########################################################################
##
## centre
##
## Takes a time series and converts to zero-mean using one of three
## methods: Slepian projection, arithmetic mean, or trimmed mean.
##
#########################################################################
centre <- function(x, nw=NULL, k=NULL, deltaT=NULL, trim=0) {
na.fail(x)
res <- NULL
if(is.null(nw) && is.null(k) ) {
res <- x - mean(x, trim=trim)
} else {
if(trim != 0) {
warning(paste("Ignoring trim =", trim))
}
stopifnot(nw >= 0.5, k >= 1, nw <= 500, k <= 1.5+2*nw)
if (nw/length(x) > 0.5) {
stop("half-bandwidth parameter (w) is greater than 1/2")
}
if(is.null(deltaT)) {
if(is.ts(x)) {
deltaT <- deltat(ts)
} else {
warning("deltaT not specified; using deltaT=1.")
deltaT <- 1.0
}
}
n <- length(x)
dpssRes <- dpss(n, k=k, nw=nw,
returnEigenvalues=TRUE)
dw <- dpssRes$v*sqrt(deltaT)
ev <- dpssRes$eigen
swz <- apply(dw, 2, sum)
## zero swz where theoretically zero; odd tapers
if(k >=2) {
swz[seq(2,k,2)] <- 0.0
}
ssqswz <- sum(swz^2)
if(!is.complex(x)) {
res <- .mweave(x, dw, swz,
n, k, ssqswz, deltaT)
res <- x - res$cntr
} else {
res.r <- .mweave(Re(x), dw, swz,
n, k, ssqswz, deltaT)
res.i <- .mweave(Im(x), dw, swz,
n, k, ssqswz, deltaT)
res <- x - complex(real=res.r$cntr, imaginary=res.i$cntr)
}
}
return(res)
}
#########################################################################
##
## jackknife coherence and helper smoother and plotting functions
##
## Example:
## jkRes <- jkcoh1(r1$auxiliary$cft, r2$auxiliary$cft,
## 4,2048,4,4096,395)
## pGreater <- percentjkMSCGreaterThan(jkRes$msc, 4)
## plotJkcoh1(r1$freqs, jkRes$TRmsc, jkRes$NTvar, 4, pGreater)
##
#########################################################################
mtm.coh <- function(mtm1, mtm2, fr=NULL, tau=0, phcorr = TRUE,
plot=TRUE,...) {
## note Dave saves the cft
## in ./odinlibs-1.1/src/mw/mw2pakt as weighted
## 1000 blkcft(n,k,curblk,curset) =
## cft(n*ndecfr,k)*sqrt(wt(n*ndecfr,k))
## we require auxiliary data
if(is.null(mtm1$mtm$eigenCoefs) || is.null(mtm2$mtm$eigenCoefs)) {
stop("Both mtm objects must have been computed with returnInternals=TRUE.")
}
if(mtm1$mtm$k != mtm1$mtm$k) {
stop("Both mtm objects must have the same value for k.")
}
##k <- mtm1$auxiliary$
if(mtm1$mtm$nfreqs != mtm1$mtm$nfreqs) {
stop("Both mtm objects must have the same value for nFFT.")
}
nord <- mtm1$mtm$k
nfreqs <- mtm1$mtm$nfreqs
cft1 <- mtm1$mtm$eigenCoefs
cft2 <- mtm2$mtm$eigenCoefs
fr <- if(is.null(fr)) array(as.double(0), nfreqs) else fr
blklof <- if(nfreqs %%2 ==0) 1 else 0
blkhif <- nfreqs -1 + blklof
nordP2 <- nord +2
out <- .Fortran("jkcoh1", cft1=as.complex(cft1),
cft2=as.complex(cft2), nord=as.integer(nord),
blklof=as.integer(blklof), blkhif=as.integer(blkhif),
fr=as.double(fr), tau=as.double(tau),
phcorr=as.integer(phcorr),
NTmsc=double(nfreqs), NTvar=double(nfreqs),
msc=double(nfreqs), ph=double(nfreqs),
phvar=double(nfreqs),
s1=double(nordP2), s2=double(nordP2),
jkmsc=double(nordP2), TRmsc=double(nordP2),
bias=double(nfreqs),
cx=complex(nordP2),
PACKAGE="multitaper")
auxiliary <- list(nfreqs=mtm1$mtm$nFreqs,
nFFT=mtm1$mtm$nFFT,
nw=mtm1$mtm$nw,
k=mtm1$mtm$k,
deltaT=mtm1$mtm$deltaT,
dtUnits=mtm1$mtm$dtUnits,
taper=mtm1$mtm$taper
)
coh.out <- list(NTmsc=out$NTmsc, NTvar=out$NTvar,
msc=out$msc, nfreqs=mtm1$mtm$nfreqs,
freq=mtm1$freq, k=nord,
ph=out$ph, phvar=out$phvar, mtm=auxiliary)
class(coh.out) <- "mtm.coh"
if(plot) {
plot.mtm.coh(coh.out, ...)
return(invisible(coh.out))
} else {
return(coh.out)
}
}
|