1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
#######################################################################
########### here are the multtest methods - marginal siblings can be found in marginal.R ######################
### one sample model with multtest ###
onesamp.multtest <- function(data, alternative, robust, psi0, alpha, nulldist, B=1000, method, seed=12345) {
result <- MTP(X=data, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "t.onesamp", robust = robust,
standardize = TRUE, alternative = alternative, psi0 = psi0,
typeone = "fwer", k = 0, q = 0.1, fdr.method = "restricted",
alpha = alpha, smooth.null = FALSE, nulldist = nulldist,
B = B, ic.quant.trans = FALSE, MVN.method = "mvrnorm",
penalty = 1e-06, method = method, get.cr = FALSE, get.cutoff = FALSE,
get.adjp = TRUE, keep.nulldist = FALSE, keep.rawdist = FALSE,
seed = seed, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL,
marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL,
keep.index = FALSE, keep.label = FALSE)
return(list(adjPValues=result@adjp, rejected=as.vector(result@reject)))
}
mutoss.onesamp.multtest.model <- function(model) {
return("typ" %in% names(model) && model$typ == "onesamp")
}
mutoss.onesamp.multtest <- function() { return(new(Class="MutossMethod",
label="Resampling-based one sample test",
errorControl="FWER",
callFunction="onesamp.multtest",
output=c("adjPValues", "rejected"),
info="<h2>Resampling-based one sample test</h2>
<p>There are different choices of resampling methods available for estimating the joint test statistics null distribution:\n\
<ul>
<li>\"boot.cs\": non-parametric bootstrap with centering and scaling</li>\n\
<li>\"boot.ctr\": centered-only bootstrap distribution</li>\n\
<li>\"boot.qt\": quantile transformed bootstrap distribution. the default marginal t-distribution with n-1 degree of freedom is used.</li>\n\
<li>\"perm\": permutation distribution (refering to the Westfall and Young procedures)</li>\n\
<li>\"ic\": under GUI construction (available at (library(multtest)) </li>\n
</ul>
</p>
<p>There are four adjustment methods to control the FWER:
<ul>
<li>\"sd.minP\": step-down common-quantile procedure based on the minima of unadjusted p-values</li>
<li>\"sd.maxT\": step-down common-cut-off procedure based on the maxima of test statistics</li>
<li>\"ss.minP\": single-step common-quantile procedure</li>
<li>\"ss.maxT\": single-step common-cut-off procedure</li>
</ul>
</p>
<p> The default number of bootstrap iterations (or number of permutations if resampling method is \"perm\") is 1000. This can be reduced to increase the speed
of computations, at a cost to precision. However, it is recommended to use a large number of resampling iterations, e.g. 10,000. </p>
<p> The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a t-test will be performed.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>\n\
<li>Westfall, P.H. and Young, S.S. (1993). <i>Resampling-Based Multiple Testing. Examples and Methods for p-value adjustment. </i>Wiley Series in Probability and Mathematical Statistics. </li>\n
</ul>",
parameters=list(
data=list(type="ANY"),
model=list(type="ANY"),
robust=list(type="logical", label="Robust statistic"),
alternative=list(type="character", label="Alternative", choices=c("two.sided", "less", "greater")),
psi0=list(type="numeric", label="Hypothesized null value", default=0),
alpha=list(type="numeric"),
nulldist=list(type="character", label="Resampling Method", choices=c("boot.cs", "boot.ctr", "boot.qt", "perm")),
B=list(type="numeric", label="Number of Resampling Iterations", default=1000),
method=list(type="character", label="Adjustment Method", choices=c("sd.minP","sd.maxT","ss.minP","ss.maxT"),
seed=list(type="ANY", default=12345)
)
))) }
### paired sample model with multtest ###
paired.multtest <- function(data, model, alternative, robust, psi0, alpha, nulldist, B=1000, method, seed=12345) {
result <- MTP(X=data, W = NULL, Y = model$classlabel, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "t.pair", robust = robust,
standardize = TRUE, alternative = alternative, psi0 = psi0,
typeone = "fwer", k = 0, q = 0.1, fdr.method = "restricted",
alpha = alpha, smooth.null = FALSE, nulldist = nulldist,
B = B, ic.quant.trans = FALSE, MVN.method = "mvrnorm",
penalty = 1e-06, method = method, get.cr = FALSE, get.cutoff = FALSE,
get.adjp = TRUE, keep.nulldist = FALSE, keep.rawdist = FALSE,
seed = seed, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL,
marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL,
keep.index = FALSE, keep.label = FALSE)
return(list(adjPValues=result@adjp, rejected=as.vector(result@reject)))
}
mutoss.paired.multtest.model <- function(model) {
return("typ" %in% names(model) && model$typ == "pairedsamp")
}
mutoss.paired.multtest <- function() { return(new(Class="MutossMethod",
label="Resampling-based paired sample test",
errorControl="FWER",
callFunction="paired.multtest",
output=c("adjPValues", "rejected"),
info="<h2>Resampling-based paired test</h2>
<p>There are different choices of resampling methods available for estimating the joint test statistics null distribution:\n\
<ul>
<li>\"boot.cs\": non-parametric bootstrap with centering and scaling</li>\n\
<li>\"boot.ctr\": centered-only bootstrap distribution</li>\n\
<li>\"boot.qt\": quantile transformed bootstrap distribution. the default marginal t-distribution with n-1 degree
of freedom is used, where n is the number of pairs.</li>\n\
<li>\"perm\": permutation distribution (refering to the Westfall and Young procedures)</li>\n\
<li>\"ic\": under GUI construction (available at (library(multtest)) </li>\n
</ul>
</p>
<p>There are four adjustment methods to control the FWER:
<ul>
<li>\"sd.minP\": step-down common-quantile procedure based on the minima of unadjusted p-values</li>
<li>\"sd.maxT\": step-down common-cut-off procedure based on the maxima of test statistics</li>
<li>\"ss.minP\": single-step common-quantile procedure</li>
<li>\"ss.maxT\": single-step common-cut-off procedure</li>
</ul>
</p>
<p> The default number of bootstrap iterations (or number of permutations if resampling method is \"perm\") is 1000. This can be reduced to increase the speed
of computations, at a cost to precision. However, it is recommended to use a large number of resampling iterations, e.g. 10,000. </p>
<p> The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a t-test will be performed.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>\n\
<li>Westfall, P.H. and Young, S.S. (1993). <i>Resampling-Based Multiple Testing. Examples and Methods for p-value adjustment. </i>Wiley Series in Probability and Mathematical Statistics. </li>\n
</ul>",
parameters=list(
data=list(type="ANY"),
model=list(type="ANY"),
robust=list(type="logical", label="Robust statistic"),
alternative=list(type="character", label="Alternative", choices=c("two.sided", "less", "greater")),
psi0=list(type="numeric", label="Hypothesized null value", default=0),
alpha=list(type="numeric"),
nulldist=list(type="character", label="Resampling Method", choices=c("boot.cs", "boot.ctr", "boot.qt", "perm")),
B=list(type="numeric", label="Number of Resampling Iterations", default=1000),
method=list(type="character", label="Adjustment Method", choices=c("sd.minP","sd.maxT","ss.minP","ss.maxT"),
seed=list(type="ANY", default=12345))
)
)) }
### two sample model with multtest ####
twosamp.multtest <- function(data, model, alternative, robust, psi0, equalvar, alpha, nulldist, B=1000, method, seed=12345) {
if (equalvar) {
result <- MTP(X=data, W = NULL, Y = model$classlabel, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "t.twosamp.equalvar", robust = robust,
standardize = TRUE, alternative = alternative, psi0 = psi0,
typeone = "fwer", k = 0, q = 0.1, fdr.method = "restricted",
alpha = alpha, smooth.null = FALSE, nulldist = nulldist,
B = B, ic.quant.trans = FALSE, MVN.method = "mvrnorm",
penalty = 1e-06, method = method, get.cr = FALSE, get.cutoff = FALSE,
get.adjp = TRUE, keep.nulldist = FALSE, keep.rawdist = FALSE,
seed = seed, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL,
marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL,
keep.index = FALSE, keep.label = FALSE)
}
else {
result <- MTP(X=data, W = NULL, Y = model$classlabel, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "t.twosamp.unequalvar", robust = robust,
standardize = TRUE, alternative = alternative, psi0 = psi0,
typeone = "fwer", k = 0, q = 0.1, fdr.method = "restricted",
alpha = alpha, smooth.null = FALSE, nulldist = nulldist,
B = B, ic.quant.trans = FALSE, MVN.method = "mvrnorm",
penalty = 1e-06, method = method, get.cr = FALSE, get.cutoff = FALSE,
get.adjp = TRUE, keep.nulldist = FALSE, keep.rawdist = FALSE,
seed = seed, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL,
marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL,
keep.index = FALSE, keep.label = FALSE)
}
return(list(adjPValues=result@adjp, rejected=as.vector(result@reject)))
}
mutoss.twosamp.multtest.model <- function(model) {
return("typ" %in% names(model) && model$typ == "twosamp")
}
mutoss.twosamp.multtest <- function() { return(new(Class="MutossMethod",
label="Resampling-based two sample test",
errorControl="FWER",
callFunction="twosamp.multtest",
output=c("adjPValues", "rejected"),
info="<h2>Resampling-based two sample test</h2>
<p>There are different choices of resampling methods available for estimating the joint test statistics null distribution:\n\
<ul>
<li>\"boot.cs\": non-parametric bootstrap with centering and scaling</li>\n\
<li>\"boot.ctr\": centered-only bootstrap distribution</li>\n\
<li>\"boot.qt\": quantile transformed bootstrap distribution. the default marginal t-distribution with n-1 degree of freedom is used.</li>\n\
<li>\"perm\": permutation distribution (refering to the Westfall and Young procedures)</li>\n\
<li>\"ic\": under GUI construction (available at (library(multtest)) </li>\n
</ul>
</p>
<p>There are four adjustment methods to control the FWER:
<ul>
<li>\"sd.minP\": step-down common-quantile procedure based on the minima of unadjusted p-values</li>
<li>\"sd.maxT\": step-down common-cut-off procedure based on the maxima of test statistics</li>
<li>\"ss.minP\": single-step common-quantile procedure</li>
<li>\"ss.maxT\": single-step common-cut-off procedure</li>
</ul>
</p>
<p> The default number of bootstrap iterations (or number of permutations if resampling method is \"perm\") is 1000. This can be reduced to increase the speed
of computations, at a cost to precision. However, it is recommended to use a large number of resampling iterations, e.g. 10,000. </p>
<p> The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a t-test will be performed.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>\n\
<li>Westfall, P.H. and Young, S.S. (1993). <i>Resampling-Based Multiple Testing. Examples and Methods for p-value adjustment. </i>Wiley Series in Probability and Mathematical Statistics. </li>\n
</ul>",
parameters=list(
data=list(type="ANY"),
model=list(type="ANY"),
robust=list(type="logical", label="Robust statistic"),
alternative=list(type="character", label="Alternative", choices=c("two.sided", "less", "greater")),
psi0=list(type="numeric", label="Hypothesized null value", default=0),
equalvar=list(type="logical", label="Equal variance"),
alpha=list(type="numeric"),
nulldist=list(type="character", label="Resampling Method", choices=c("boot.cs", "boot.ctr", "boot.qt", "perm")),
B=list(type="numeric", label="Number of Resampling Iterations", default=1000),
method=list(type="character", label="Adjustment Method", choices=c("sd.minP","sd.maxT","ss.minP","ss.maxT"),
seed=list(type="ANY", default=12345))
)
)) }
##################### F test #############################################
###########################################################################
ftest.multtest <- function(data, model, robust, alpha, nulldist, B=1000, method, seed=12345) {
result <- MTP(X=data, W = NULL, Y = model$classlabel, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "f", robust = robust,
standardize = TRUE, typeone = "fwer",
alpha = alpha, smooth.null = FALSE, nulldist = nulldist,
B = B, ic.quant.trans = FALSE, MVN.method = "mvrnorm",
penalty = 1e-06, method = method, get.cr = FALSE, get.cutoff = FALSE,
get.adjp = TRUE, keep.nulldist = FALSE, keep.rawdist = FALSE,
seed = seed, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL,
marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL,
keep.index = FALSE, keep.label = FALSE)
return(list(adjPValues=result@adjp, rejected=as.vector(result@reject)))
}
mutoss.ftest.multtest <- function() { return(new(Class="MutossMethod",
label="Resampling-based F test",
errorControl="FWER",
callFunction="ftest.multtest",
output=c("adjPValues", "rejected"),
info="<h2>Resampling-based F test</h2>
<p>There are different choices of resampling methods available for estimating the joint test statistics null distribution:\n\
<ul>
<li>\"boot.cs\": non-parametric bootstrap with centering and scaling</li>\n\
<li>\"boot.ctr\": centered-only bootstrap distribution</li>\n\
<li>\"boot.qt\": quantile transformed bootstrap distribution. the default marginal F-distribution with df1=k-1, df2=n-k for k gruops is used.</li>\n\
<li>\"perm\": permutation distribution (refering to the Westfall and Young procedures)</li>\n\
<li>\"ic\": under GUI construction (available at (library(multtest)) </li>\n
</ul>
</p>
<p>There are four adjustment methods to control the FWER:
<ul>
<li>\"sd.minP\": step-down common-quantile procedure based on the minima of unadjusted p-values</li>
<li>\"sd.maxT\": step-down common-cut-off procedure based on the maxima of test statistics</li>
<li>\"ss.minP\": single-step common-quantile procedure</li>
<li>\"ss.maxT\": single-step common-cut-off procedure</li>
</ul>
</p>
<p> The default number of bootstrap iterations (or number of permutations if resampling method is \"perm\") is 1000. This can be reduced to increase the speed
of computations, at a cost to precision. However, it is recommended to use a large number of resampling iterations, e.g. 10,000. </p>
<p> The robust version uses the Kruskal-Wallis test, otherwise a F test will be performed.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>\n\
<li>Westfall, P.H. and Young, S.S. (1993). <i>Resampling-Based Multiple Testing. Examples and Methods for p-value adjustment. </i>Wiley Series in Probability and Mathematical Statistics. </li>\n
</ul>",
parameters=list(
data=list(type="ANY"),
model=list(type="ANY"),
robust=list(type="logical", label="Robust statistic"),
alpha=list(type="numeric"),
nulldist=list(type="character", label="Resampling Method", choices=c("boot.cs", "boot.ctr", "boot.qt", "perm")),
B=list(type="numeric", label="Number of Resampling Iterations", default=1000),
method=list(type="character", label="Adjustment Method", choices=c("sd.minP","sd.maxT","ss.minP","ss.maxT"),
seed=list(type="ANY", default=12345)
)))
)}
mutoss.ftest.multtest.model <- function(model) {
return("typ" %in% names(model) && model$typ == "ftest")
}
|