1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
#
# Author: JonathanRosenblatt
###############################################################################
#----------- Validating input of compare procedure------------#
mu.test.class<- function(classes){
if (any(classes!='Mutoss')) stop('Input is not a "Motoss" class object')
##TODO: will this cause prolems for inherited class objects?
}
mu.test.type<- function(types){
if( any(types != types[1]) ){
message(' Notice:You are comparing methods for different error types. \n These should not be compared! \n Output will be generated nevertheless. \n')
}
}
mu.test.rates<-function(rates){
if( any(rates != rates[1]) ){
message(' Notice:You are comparing methods with different error rates. \n These should not be compared! \n Output will be generated nevertheless. \n')
}
}
mu.test.same.data<- function(pvals){
pvals.different<- any( apply(pvals,1, function(x) any(x!=x[1])))
if(pvals.different) stop('Different data was used for suppied procedures.')
}
mu.test.name<- function(hyp.names){
names.different<- any( apply(hyp.names,1, function(x) any(x!=x[1])))
if(names.different) message('Notice: Hypotheses have different names. Can they be compared?')
}
#-------- Create comparison list for Mutoss objects--------------#
compareMutoss<-function(...){
objects<-list(...)
classes<- sapply(objects, function(x) class(x) )#getting object classes
mu.test.class(classes) #testing for compatible object classes
types<- sapply(objects, function(x) x@errorControl@type)#getting error control types
mu.test.type(types) #testing for compatible error control types
rates<-sapply(objects, function(x) x@errorControl@alpha)#extracting error rates
pi.nulls<- as.numeric(lapply(objects, function(x) x@pi0))#extracting pi0 estimates
pvalues<- sapply(objects, function(x) x@pValues )# getting adjusted pvals
mu.test.same.data(pvalues)
m<- nrow(pvalues)
raw.hyp.names<- lapply(objects, function(x) x@hypNames )# getting hypothesis names
if(all(sapply(raw.hyp.names, function(x) identical(x, character(0))))){
hyp.names<- paste('hyp', 1:m, sep='')
}
else if(all(sapply(raw.hyp.names, function(x) length(x)==m))) {
mu.test.name(raw.hyp.names)
hyp.names<- raw.hyp.names[,1]
}
##TODO: [JR] Deal with mising hyp names only in a subset of objects
# Preparing Raw Pvalues
raw.pvals<- pvalues[,1]
pval.order<- order(raw.pvals)
pval.ranks<- rank(raw.pvals)
raw.pvals.frame<-data.frame(
pValue=raw.pvals,
order=pval.order,
ranks=pval.ranks)
row.names(raw.pvals.frame)<-hyp.names
#Preparing adjusted pvalues
adj.pvals<- lapply(objects, function(x) x@adjPValues )
method.names<- unlist(lapply(adj.pvals, function(x) attributes(x)[1]))
adj.pvals.frame<- data.frame(adj.pvals)
colnames(adj.pvals.frame)<- method.names
row.names(adj.pvals.frame)<- hyp.names
#Preparing critical values
critical<- lapply(objects, function(x) x@criticalValues )
method.names<- unlist(lapply(critical, function(x) attributes(x)[1]))
critical.frame<- data.frame(critical)
colnames(critical.frame)<- method.names
row.names(critical.frame)<- hyp.names
#Preparing decisions
rejections<- lapply(objects, function(x) x@rejected )
method.names<- unlist(lapply(rejections, function(x) attributes(x)[1]))
rejections.frame<- data.frame(rejections)
colnames(rejections.frame)<- method.names
row.names(rejections.frame)<- hyp.names
##TODO: [JR] Add groud truth to comparison method
comparing<- list(
types=types,
rates=rates,
pi.nulls=pi.nulls,
raw.pValues=raw.pvals.frame,
adjusted.pvals=adj.pvals.frame,
criticalValue=critical.frame,
rejections=rejections.frame
)
return(comparing)
}
#For testing purposes
#source('~/workspace/mutoss/src/BasicFunctions/DummyBigObjects.R')
#test<- list(mu.test.obj.1, mu.test.obj.2)
#-------------- Comparison of adjusted p values -----------------#
mu.compare.adjusted<- function(comparison.list, identify.check=F){
adjPValues<- comparison.list[['adjusted.pvals']]
hyp.num<- nrow(adjPValues)
method.num<- ncol(adjPValues)
method.names<- factor(colnames(adjPValues))
method.index<- as.numeric(method.names)
raw.pValues<-comparison.list[['raw.pValues']]
pvalue.ranks<-raw.pValues$ranks
method.type<-comparison.list[['types']]
stacked.adjPValues<- unlist(adjPValues, use.names=F)
x<- rep(pvalue.ranks, method.num)
method.labels<- rep(method.names, each=hyp.num)
hyp.labels<- rep(row.names(adjPValues), method.num)
point.charachters<- rep(method.index, each=hyp.num) #for plotting purposes only
point.size<- hyp.num^(-0.1)
plot(stacked.adjPValues~x,
pch=point.charachters,
ylim=c(0,1),
cex=point.size,
xlab='')
the.title<- paste('Adjusted p-values for ',unique(method.type),' controlling procedures')
title(the.title)
par(xpd=T)
legend(x=0, y=-0.15,
horiz=T,
legend=method.names,
pch=method.index,
cex=method.num ^ (-1/4) )
par(xpd=F) #reset par to default value
if(identify.check) {
identify(stacked.adjPValues~x, labels=hyp.labels )
}
##TODO: [JR] Plotting method using colors?
}
#For testing purposes
#source('~/workspace/mutoss/src/BasicFunctions/DummyBigObjects.R')
#----------- Comparison of critical vales---------- #
mu.compare.critical<- function(comparison.list, identify.check=F){
method.type<-comparison.list[['types']] #extracting method type
criticalValues<- comparison.list[['criticalValue']]#extracting critical values
hyp.num<- nrow(criticalValues)
method.num<- ncol(criticalValues)
method.names<- factor(colnames(criticalValues))
method.index<- as.numeric(method.names)
raw.pValues<-comparison.list[['raw.pValues']] #extracting raw palues
pvalue.ranks<-raw.pValues$ranks
stacked.criticalValues<- unlist(criticalValues, use.names=F)
x<- rep(pvalue.ranks, method.num)
method.labels<- rep(method.names, each=hyp.num)
hyp.labels<- rep(row.names(criticalValues), method.num)
point.charachters<- rep(method.index, each=hyp.num) #for plotting purposes only
point.size<- hyp.num^(-0.1)
plot(stacked.criticalValues~x,
pch=point.charachters,
ylim=c(0,1),
xlab='',
cex=point.size)
the.title<- paste('Critical Values for ',unique(method.type),' controlling procedures')
title(the.title)
par(xpd=T)
legend(
x=0,
y=-0.15,
horiz=T,
legend=method.names,
pch=method.index,
cex=method.num ^ (-1/4) )
par(xpd=F) #reset par to default value
if(identify.check) {
identify(stacked.criticalValues~x, labels=hyp.labels )
}
}
#For testing purposes:
#source('~/workspace/mutoss/src/BasicFunctions/DummyBigObjects.R')
#mu.compare.critical(1)
#mu.compare.critical(compare.3, T)
#----- Sumary of comparison-----------#
mu.compare.summary<- function(comparison.list){
method.type<-comparison.list[['types']] #extracting method type
error.rates<-comparison.list[['rates']] #extracting error rates
pi.nulls<-comparison.list[['pi.nulls']] #extracting pi0
rejections<-comparison.list[['rejections']]
hyp.num<- nrow(rejections)
method.num<- ncol(rejections)
method.names<- factor(colnames(rejections))
method.index<- as.numeric(method.names)
count.rejections<-apply(rejections, 2, sum)
seperate<- rep('|', method.num)
summary<-data.frame(
method.type, seperate,
error.rates, seperate,
count.rejections, seperate,
pi.nulls)
colnames(summary) <-c(
'Error Type'," ",
'Error Rate'," ",
'Rejections Count', " ",
'pi_0')
cat('\n Comparing multipe hypothesis procedures.\n',
hyp.num, 'hypotheses tested.\n\n')
print(summary)
}
#For testing purposes :
#source('~/workspace/mutoss/src/BasicFunctions/DummyBigObjects.R')
#mu.compare.summary(1)
#mu.compare.summary(compare.3)
|