1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
# Student - Newman - Keuls Test
#
# Author: FrankKonietschke
###############################################################################
snk <- function(formula,data,alpha, MSE=NULL, df=NULL, silent = FALSE){
dat <- model.frame(formula, data)
if (ncol(dat) != 2) {
stop("Specify one response and only one class variable in the formula")
}
if (is.numeric(dat[, 1]) == FALSE) {
stop("Response variable must be numeric")
}
response <- dat[, 1]
group <- as.factor(dat[, 2])
fl <- levels(group)
a <-nlevels(group)
N <- length(response)
samples <- split(response,group)
n <- sapply(samples,"length")
mm <- sapply(samples,"mean")
vv <- sapply(samples,"var")
if (is.null(MSE)){
MSE <- sum((n-1)*vv)/(N-a)
}
if (is.null(df)){
df <- N-a
}
nc <- a*(a-1)/2
order.h1 <- data.frame(Sample=fl, Size=n, Means=mm,Variance=vv)
ordered <- order.h1[order(order.h1$Means,decreasing=FALSE), ]
rownames(ordered) <- 1:a
#---------------- Compute helping indices ----------#
i <- 1:(a-1)
h1 <- list()
for(s in 1:(a-1)){
h1[[s]]<- i[1:s]
}
vi <- unlist(h1)
j <- a:2
h2 <-list()
for (s in 1:(a-1)){
h2[[s]] <- j[s:1]
}
vj <- unlist(h2)
h3 <- list()
h4 <- list()
for (s in 1:(a-1)){
h3[[s]] <- rep(j[s],s)
h4[[s]] <- rep(i[s],s)
}
Nmean <- unlist(h3)
Step <- unlist(h4)
#--------Compute the Mean Differences---------#
mean.difference <- sapply(1:nc,function(arg){
i <- vi[arg]
j <- vj[arg]
(ordered$Means[j]-ordered$Means[i])
})
mean.difference <- round(mean.difference, 4)
# ------- Compute the test statistics --------#
T <- sapply(1:nc,function(arg){
i<-vi[arg]
j<-vj[arg]
(ordered$Means[j]-ordered$Means[i])/sqrt(MSE/2*(1/ordered$Size[i] + 1/ordered$Size[j]))
})
T <- round(T, 4)
# ----- Compute now the critical value -----#
quantiles <- qtukey(1-alpha,Nmean,df)
pvalues <- ptukey(T,Nmean,df,lower.tail=FALSE)
#---- Calculate the rejected Hypotheses ------#
Rejected1 <- (pvalues<alpha)
#------------ Names for the Output -----------#
names.ordered <- sapply(1:nc, function(arg){
i <- vi[arg]
j <- vj[arg]
paste(ordered$Sample[j], "-", ordered$Sample[i], sep="")
})
# ------ Compute now the rejected statistics-----#
for (s in 1:nc){
if (Rejected1[s]==FALSE){
Under1 <- (vj[s]>=vj)
Under2 <- (vi[s]<=vi)
Under3 <- Under1 * Under2
Under4 <- which(Under3==1)
Rejected1[Under4] <- FALSE
}
}
#-----Prepare the pValues for the Output----#
Out1 <- (pvalues < alpha)
Out2 <- (Rejected1 == FALSE)
Out3 <- Out1 * Out2
Out4 <- (Out3 == 1)
pvalues <- round(pvalues,4)
pvalues[Out4] <- paste(">",alpha)
variances.output <- data.frame(Overall=MSE, df=df)
Comparison <- data.frame(Comparison=names.ordered,Diff=mean.difference, Statistic=T, Adj.P=pvalues, Rejected=Rejected1, Layer = Step)
if (! silent)
{
cat("#----Student-Newman-Keuls (1927; 1939; 1952) rejective Multiple Test Procedure \n\n")
cat("#----Attention: The SNK test controls the FWER only in the WEAK sense \n\n")
}
result <- list(Ordered.Means = ordered, Variances=variances.output,
SNK = Comparison)
return(result)
}
snk.wrapper <- function(model, data, alpha, silent=FALSE) {
result <- snk(formula=formula(model),
data,
alpha = alpha)
difference <- result$SNK$Diff#, result$SNK$Statistic, result$SNK$Layer)
diffm<-cbind(difference,rep(NA,length(difference)),rep(NA,length(difference)))
diffm<-matrix(diffm,nrow=length(difference))
rownames(diffm)<-result$SNK$Comparison
return(list(adjPValues=result$SNK$Adj.P,rejected=result$SNK$Rejected,statistics=result$SNK$Statistic,
confIntervals= diffm,errorControl = new(Class='ErrorControl',type="FWER",alpha=alpha)))
}
mutoss.snk <- function() { return(new(Class="MutossMethod",
label="Student-Newman-Keuls Test",
errorControl="FWER.weak",
callFunction="snk.wrapper",
output=c("adjPValues", "rejected", "confIntervals", "errorControl"),
info="<h2>Student - Newman - Keuls rejective test procedure.\
The procedure controls the FWER in the WEAK sense. </h2>\n\n\
<p> The Newman-Keuls procedure is based on a stepwise or \
layer approach to significance testing. Sample means are \
ordered from the smallest to the largest. The largest \
difference, which involves means that are r = p steps apart, \
is tested first at alpha level of significance; if significant, \
means that are r = p - 1 steps apart are tested at \alpha level \
of significance and so on.\
</p>\n\
<h3>Reference:</h3>\
<ul>\
<li>Keuls M (1952). \"<i> The use of the studentized range in \
connection with an analysis of variance
</i>\" Euphytica 1 37, 112-122. </li>\n\
</ul>",
parameters=list(
data=list(type="data.frame"),
model=list(type="ANY"),
alpha=list(type="numeric")
)
)) }
|