1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
# Here all implemented concrete SUD-Procedures can be found.
#
# Author: MarselScheer and WerftWiebke
###############################################################################
#++++++++++++++++++++++++++++ OutputFkt +++++++++++++++++++++
printRejected = function(rejected, pValues = NULL, adjPValues = NULL)
{
cat("Number of hyp.:\t", length(rejected), "\n")
cat("Number of rej.:\t", sum(rejected), "\n")
idx <- which(rejected)
if (length(idx) != 0)
{
output <- data.frame(rejected = idx)
if (!is.null(pValues))
{
output <- data.frame(output, pValues[idx])
names(output)[length(names(output))] <- "pValues"
}
if (!is.null(adjPValues))
{
output <- data.frame(output, adjPValues[idx])
names(output)[length(names(output))] <- "adjPValues"
}
if (!is.null(pValues))
# sorting by pValues
output <- output[order(output$pValue), ]
else
{
if (!is.null(adjPValues))
# no pValues availible, sorting by adjPValues
output <- output[order(output$adjPValues), ]
}
rownames(output) <- 1:length(idx)
print(output)
}
}
#---------------------------- OutputFkt ---------------------
#Rom_simpleImplementation <- function(pValues, alpha)
#{
# # ROM, D. M. (1990). A sequentially rejective test procedure based
# # on a modified Bonferroni inequality. Biometrika 77, 663-665.
#
# # Formula for the critical values is taken from
# # FINNER, H. and ROTERS, M. (2002). Multiple hypotheses testing and
# # expected type I errors. Ann. Statist. 30, 220-238.
# # Notice: The smallest critical value in this paper is alpha_1!!
# # Thus the critical values are calculated in this manner, and
# # at the end the order is reversed.
#
# # ++++++ Calculating critical values
#
# # TODO: Perhaps there are computational problems if too many hypotheses are tested.
# len <- length(pValues)
# criticalValues <- rep(0, times=len)
# criticalValues[1] <- alpha
#
# # TODO: !! firstSum_k[14:len] is constant for example if alpha=5%, len=200
# # firstSum_k := SUMME(alpha^i, i=1..(k-1))
# firstSum_k <- cumsum(c(0, sapply(1:(len-1), function(i) alpha^i)))
#
# criticalValues[2] <- 1/2 * (firstSum_k[2] - 0)
# secondSummand <- function(i) choose(k,i) * criticalValues[i+1]^(k-i)
# for (k in 3:len)
# {
# # TODO: secondSum can be calculated faster!
# secondSum <- sum(sapply(1:(k-2), secondSummand))
# criticalValues[k] <- 1 / k * (firstSum_k[k] - secondSum)
# #cat("1 ", secondSum, "\n")
# }
# criticalValues <- criticalValues[len:1]
#
# # ------ Calculating critical Values
#
# SU(pValues, criticalValues)
#
#}
# TODO: MS !! Discussion about big n !!
rom <- function(pValues, alpha, silent = FALSE)
{
#
# Remark: The critical values calculated by this procedure were
# compared with the critical values calculated by Rom
# himself in his paper and they are the same.
# Formula for the critical values is taken from
# FINNER, H. and ROTERS, M. (2002). Multiple hypotheses testing and
# expected type I errors. Ann. Statist. 30, 220-238.
# Notice: The smallest critical value in this paper is alpha_1!!
# Thus the critical values are calculated in this manner, and
# at the end the order is reversed.
# ++++++ Calculating critical Values
# TODO: MS perhaps there are computational problems if too many hypotheses are tested.
len <- length(pValues)
criticalValues <- rep(0, times=len)
criticalValues[1] <- alpha
# TODO: MS !! firstSum_k[14:len] is constant for example if alpha=5%, len=200
# firstSum_k := SUMME(alpha^i, i=1..(k-1))
firstSum_k <- cumsum(c(0, sapply(1:(len-1), function(i) alpha^i)))
criticalValues[2] <- 1/2 * (firstSum_k[2] - 0)
# SUMME(binomial(k,i) * alpha_{i+1}^{k-i}, i=1..(k-2))
# = SUMME(aki, i=1..(k-2))
# = SUMME(binomial(k-1, i) * k / (k-i) * a(k-1)i * alpha_{i+1}, i=1..(k-2))
# for k = 3 and i = 1
# aki and binKoef actually has 2 dimensions, the k-dimension and the i-dimension.
# But in this code we will only work with the i-dimension. In every step of
# the for-loop aki[i] will be updated.
aki <- rep(0, times = (len-2))
binKoef <- rep(1, times = (len-2))
binKoef[1] <- choose(3,1)
aki[1] <- criticalValues[2]^(3-1)
for (k in 3:len)
{
secondSummand <- sum(binKoef[1:(k-2)] * aki[1:(k-2)])
criticalValues[k] <- 1/k * (firstSum_k[k] - secondSummand)
# updating the vectors for the next step
binKoef[k-1] <- (k+1) * k / 2 #choose(k+1, k-1)
binKoef[1:(k-2)] <- binKoef[1:(k-2)] * (k+1) / (k:3)
aki[k-1] <- criticalValues[k]^2
aki[1:(k-2)] <- aki[1:(k-2)] * criticalValues[2:(k-1)]
}
criticalValues <- criticalValues[len:1]
# ------ Calculating critical Values
rejected <- SU(pValues, criticalValues)
if (! silent)
{
cat("\n\n\t\tRom's (1990) step-up procedure\n\n")
printRejected(rejected, pValues, NULL)
}
# TODO: MS calculating adjustedPValues for ROM numerically
return(list(rejected = rejected, criticalValues = criticalValues,
errorControl = new(Class='ErrorControl',type="FWER",alpha=alpha))
)
}
mutoss.rom <- function() { return(new(Class="MutossMethod",
label="Rom's (1990) step-up",
errorControl="FWER",
callFunction="rom",
output=c("rejected", "criticalValues","errorControl"),
info="<h2>Rom's step-up procedure</h2>\n\n\
<p>Rom's step-up-procedure is applied to pValues. The procedure
controls the FWER in the strong sense if the pValues are
stochastically independent.</p>
<p> This function calculates the critical values by the formula given
in Finner, H. and Roters, M. (2002) based on the joint distribution
of order statistics. After that a step-up test
is performed to reject hypotheses associated with pValues.</p>
<p> Since the formula for the critical values is recursive,
the calculation of adjusted pValues is far from obvious and is
not implemented here.</p>
<h3>Reference:</h3>\
<ul>\
<li>Rom, D. M. \"<i> A sequentially rejective test procedure based on a modified Bonferroni inequality. </i>\" Biometrika 77, 663-665. </li>\n\
</ul>",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
#-------------------- Holm's Step-down--------------------#
holm <- function(pValues, alpha, silent = FALSE)
{
m <- length(pValues)
criticalValues <- sapply(1:m, function(i) alpha/(m-i+1))
adjPValues <- p.adjust(pValues, "holm")
rejected <- (adjPValues <= alpha)
if (! silent)
{
cat("\n\n\t\tHolm's (1979) step-down Procedure\n\n")
printRejected(rejected, pValues, adjPValues)
}
return(list(adjPValues = adjPValues,
rejected = rejected, criticalValues=criticalValues,
errorControl = new(Class='ErrorControl',type="FWER",alpha=alpha))
)
}
mutoss.holm <- function() { return(new(Class="MutossMethod",
label="Holm's (1979) step-down",
errorControl="FWER",
callFunction="holm",
output=c("adjPValues", "rejected", "criticalValues","errorControl"),
info="<h2>Holm's step-down-procedure</h2>\n\n\
<p> Holm's step-down-procedure is applied to pValues. It controls
the FWER in the strong sense under arbitrary dependency.</p>\n\
<p> Holm's procedure uses the same critical values as the Hochberg's procedure, namely <i>c(i)=α/(m-i+1)</i>,
but is a step-down version while Hochberg's method is a step-up version of the Bonferroni test.
Holm's method is based on the Bonferroni inequality and is valid regardless of the joint
distribution of the test statistics, whereas Hochberg's method relies on the assumption that
Simes' inequality holds for the joint null distribution of the test statistics. If this assumption is met, Hochberg's
step-up procedure is more powerful than Holm's step-down procedure.</p>\n\
<h3>Reference:</h3>\
<ul>\
<li>Holm, S. (1979). \"<i> A simple sequentially rejective multiple test procedure. </i>\" Scand. J. Statist. Vol. 6, 65-70. </li>\n\
<li>Huang, Y. and Hsu, J. (2007). \"<i> Hochberg's step-up method: cutting corners off Holm's step-down method. </i>\" Biometrika, 94(4):965-975.</li>
</ul>",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
# TODO: MS Probably jointCDF.unif should probably be moved to some math.R or so.
# TODO: MS !! jointCDF.unif: There are numerical issues because the of accuracy of doublePrecison
# TODO: MS !! How to communicate numerical issues to the user.
jointCDF.orderedUnif = function(vec)
{
# vec is not ordered. Thus the probability must be 0
if (!all(order(vec) == 1:length(vec)))
{
print("ORDER!")
print(vec)
print(order(vec))
vecName <- deparse(substitute(vec))
warning(paste("jointCDF.unif(): The variable", vecName, "is not ordered. Thus the probability is 0!"))
return(0)
}
if (min(vec) <= 0) return(0)
vec[ vec > 1 ] <- 1
if (100 < length(vec))
warning("Length of the argument is longer than 100. Calculated value may not be useable!")
# By Bolshev's recursion
# P(U_{1:n} <= vec[1], ..., U_{n:n} <= vec[n])
# = Fn(vec[1], ..., vec[n])
# = 1 - sum( binom(n, j) * Fj(vec[1], ..., vec[j]) * (1-vec[j+1])^(n-j), j=0..n-1)
# with F0 = 1.
# The variable Fj[k+1] used in this function will correspond to
# Fk(vec[1], ..., vec[k]) for all k = 0 .. n.
# So Fj[1] is F0 = 1, Fj[2] is F1(vec[1]) and so on.
Fj <- rep(0, times = length(vec) + 1)
Fj[1] <- 1 # F0
# consider k;
# Fj[k+1];
# Fk(vec[1], ..., vec[k])
# = 1 - sum( binom(k, s) * Fs(vec[1], ..., vec[s]) * (1-vec[s+1])^(n-s) , s=0..k-1 )
# = 1 - sum( choose(k,s) * Fj[s+1] * (1 - vec[s+1])^(k-s), s=0..k-1 )
summand <- function(s) choose(k,s) * Fj[s+1] * (1 - vec[s+1])^(k-s)
for(k in 1:length(vec))
Fj[k+1] <- 1 - sum( sapply(0:(k-1), summand))
return(Fj[length(vec)+1])
}
calculateBetaAdjustment = function(n, startIDX_SUD, alpha, silent = FALSE, initialBeta = 1, maxBinarySteps = 50, tolerance = 0.0001)
{
#+++++++++++++++++++++++++++ Subfunctions +++++++++++++++++++++++++
#probability mass function
pmf <- function(criticalValues, startIDX_SUD, n, n0, j)
{# Calculates P_{n,n0}(V = j) for a set of critical Values.
# Formulas are from Finner, Gontscharuk, Dickhaus: FDR controlling step-up-down tests
# related to the asmptotically optimal rejection curve. (to appear)
if (n0 < j) return(0)
n1 <- n - n0
if (startIDX_SUD <= n1)
{
if (j == 0)
return( choose(n0,j)
* 1
* (1-criticalValues[n1 + j + 1])^(n0-j)
)
return( choose(n0,j)
* jointCDF.orderedUnif(criticalValues[(n1 + 1):(n1 + j)])
* (1-criticalValues[n1 + j + 1])^(n0-j)
)
}
if ((n1 < startIDX_SUD) && (j < startIDX_SUD - n1 - 1))
{
if (n1 + j == 0) # <=> n1 == 0 and j == 0
return(choose(n0,j)
* jointCDF.orderedUnif(c(rep(1 - criticalValues[startIDX_SUD], times = (n - startIDX_SUD + 1)), 1 - criticalValues[(startIDX_SUD - 1):(n1 + j + 1)]))
* 1
)
return(choose(n0,j)
* jointCDF.orderedUnif(c(rep(1 - criticalValues[startIDX_SUD], times = (n - startIDX_SUD + 1)), 1 - criticalValues[(startIDX_SUD - 1):(n1 + j + 1)]))
* criticalValues[n1 + j]^j
)
}
if ((n1 < startIDX_SUD) && (j == startIDX_SUD - n1 - 1))
{
if (n1 + j == 0) # <=> n1 == 0 and j == 0
return(choose(n0,j)
* jointCDF.orderedUnif(rep(1 - criticalValues[startIDX_SUD], times = (n - startIDX_SUD + 1)))
* 1
)
return(choose(n0,j)
* jointCDF.orderedUnif(rep(1 - criticalValues[startIDX_SUD], times = (n - startIDX_SUD + 1)))
* criticalValues[n1 + j]^j
)
}
if ((n1 < startIDX_SUD) && (j == startIDX_SUD - n1))
return(choose(n0,j)
* jointCDF.orderedUnif(rep(criticalValues[startIDX_SUD], times=j))
* (1 - criticalValues[n1 + j + 1])^(n0 - j)
)
if ((n1 < startIDX_SUD) && (startIDX_SUD - n1 < j))
return(choose(n0,j)
* jointCDF.orderedUnif(c(rep(criticalValues[startIDX_SUD], times=(startIDX_SUD - n1)), criticalValues[(startIDX_SUD + 1):(n1 + j)]))
* (1 - criticalValues[n1 + j + 1])^(n0 - j)
)
}
calculateMaximumUpperFDRBound <- function(criticalValues, n, startIDX_SUD)
{
# Formulas are from Finner, Gontscharuk, Dickhaus: FDR controlling step-up-down tests
# related to the asmptotically optimal rejection curve. (to appear)
# Calculating the probability mass function of V under a DU(n_0, n) model
# n = Number of hypotheses
# n0 = Number of true hypotheses
# pm[j+1,n0+1] = P_{n,n0}(V = j)
pm <- sapply( 1:n,
function(n0)
{
sapply(0:n, # actually we only had to go to n0, but in this way pm will be a matrix
function(j)
{
pmf(criticalValues, startIDX_SUD, n, n0, j)
}
)
}
)
# now the special case n0 = 0, then P_{n,n0}(V=0) = 1
pm <- cbind(c(1, rep(0, times = n)), pm)
# just for plausibility, gonna look if P_{n,n0}(V in {0, ..., n}) = 1 for every n0 = 1, ..., n
rng <- range(colSums(pm))
if (rng[2]-rng[1] > 0.01)
warning("Maximum upper bounds of FDR probably not accurate!")
# Calculating b(n,n0|startIDX_SUD) for every n0
# which is a uppper bound for the FDR according to Finner, Gontscharuk, Dickhaus.
bn <- sapply(1:n,
function(n0)
{
n1 <- n - n0
n0 * sum(sapply(1:n0, function(j) criticalValues[n1 + j]/(n1 + j) * pm[j, n0]))
}
)
bn
return(max(bn))
}
SearchInitialBetaInterval <- function(n, startIDX_SUD, alpha, initialBeta)
{
# searches two beta's: beta1 and beta2 such that the beta2-adjusted AORC
# controls the FDR and the beta1-adjusted AORC not and beta2 + step = beta1
criticalValues <- sapply(1:n, function(i) i * alpha / (n + initialBeta - i * (1 - alpha)))
UpperFDRBound <- calculateMaximumUpperFDRBound(criticalValues, n, startIDX_SUD)
# startBeta controls the FDR, thus beta must be reduced!
if (UpperFDRBound < alpha)
{
FDRControlOfInitialBeta <- TRUE
step <- -1
}
else
{
FDRControlOfInitialBeta <- FALSE
step <- 1
}
beta <- initialBeta + step
intervalFound <- FALSE
while (!intervalFound)
{
criticalValues <- sapply(1:n, function(i) i * alpha / (n + beta - i * (1 - alpha)))
UpperFDRBound <- calculateMaximumUpperFDRBound(criticalValues, n, startIDX_SUD)
# if we have FDRControl by the initialBeta but not for beta, then we are done!
# Also if we have not control of the FDR by the initalBeta but for beta, then we are done!
if (xor(UpperFDRBound < alpha, FDRControlOfInitialBeta))
intervalFound <- TRUE
else
# initialBeta and beta both control the FDR or both do not control the FDR
beta <- beta + step
}
if (FDRControlOfInitialBeta)
return(c(beta, beta + 1))
return(c(beta - 1, beta))
}
#--------------------------- Subfunctions -------------------------
if (!silent)
cat("Searching initial interval to start the bisection approach.\n")
betaInt <- SearchInitialBetaInterval(n, startIDX_SUD, alpha, initialBeta)
beta <- betaInt[2]
step <- (betaInt[2] - betaInt[1]) / 2
numberOfSteps <- 0
if (!silent)
cat("Starting the bisection approach.\n")
lastFeasibleBeta <- beta
lastFeasibleUpperFDRBound <- -Inf
while(numberOfSteps < maxBinarySteps)
{
numberOfSteps <- numberOfSteps + 1
criticalValues <- sapply(1:n, function(i) i * alpha / (n + beta - i * (1 - alpha)))
UpperFDRBound <- calculateMaximumUpperFDRBound(criticalValues, n, startIDX_SUD)
if (!silent)
cat("Step ", numberOfSteps, ": beta =", beta, " => Upper FDR bound =", UpperFDRBound, "\n")
if (alpha - tolerance <= UpperFDRBound && UpperFDRBound <= alpha)
{
if (!silent)
{
cat("\nUpper FDR bound element in [alpha - tolerance, alpha]\n")
cat("Returned beta =", beta, " => Upper FDR bound =", UpperFDRBound, "\n")
}
return(beta)
}
if (UpperFDRBound > alpha)
beta <- beta + step
else
{
lastFeasibleBeta <- min(beta, lastFeasibleBeta)
lastFeasibleUpperFDRBound <- max(UpperFDRBound, lastFeasibleUpperFDRBound)
beta <- beta - step
}
step <- step / 2
}
if(!silent)
cat("\nReturned beta =", lastFeasibleBeta, " => Upper FDR bound =", lastFeasibleUpperFDRBound, "\n" )
return(lastFeasibleBeta)
}
#------------------------ AORC---------------------#
aorc <- function(pValues, alpha, startIDX_SUD = length(pValues), betaAdjustment, silent = FALSE)
{
len <- length(pValues)
if (missing(betaAdjustment))
{
if (!silent)
cat("Using calculateBetaAdjustment() to set the missing parameter betaAdjustment.\n")
betaAdjustment = calculateBetaAdjustment(len, startIDX_SUD, alpha, silent)
}
criticalValues <- sapply(1:len, function(i) i * alpha / (len + betaAdjustment - i * (1 - alpha)))
rejected <- SUD(pValues, criticalValues, startIDX_SUD)
if (! silent)
{
cat("\n\n\t\tAsymptotically optimal rejection curve (2009)\n\n")
printRejected(rejected, pValues)
}
return(list(rejected = rejected, criticalValues = criticalValues,
errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.aorc <- function() { return(new(Class="MutossMethod",
label="Asymptotically optimal rejection curve (2009)",
errorControl="FDR",
callFunction="aorc",
output=c("criticalValues", "rejected", "errorControl"),
info="<h2>Step-up-down procedure based on the asymptotically optimal rejection curve</h2>\n\n\
<p> The graph of the function f(t) = t / (t * (1 - alpha) + alpha) is called the asymptotically \
optimal rejection curve. Denote by finv(t) the inverse of f(t). Using the \
critical values finv(i/n) for i = 1, ..., n yields asymptotic FDR control. \
To ensure finite FDR control it is possible to adjust f(t) by a factor. The \
function calculateBetaAdjustment() calculates a beta such that (1 + beta / n) * f(t) \
can be used to control the FDR for a given finite sample size. If beta is not provided,
calculateBetaAdjustment() will be called automatically.\
</p>\n\
<h3>Reference:</h3>\
<ul>\
<li>Finner, H., Dickhaus, T. & Roters, M. \"<i> On the false discovery rate and an asymptotically \
optimal rejection curve. </i>\" The Annals of Statistics 37, 596-618. </li>\n\
</ul>",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"),
startIDX_SUD=list(type="integer", label="Start Index for Step-Up-Down", optional=TRUE),
betaAdjustment=list(type="numeric", label="Adjustment factor beta_n", optional=TRUE))
)) }
#aorc( runif(30), 0.05, 5)
#----------------- Banjamini Liu----------------#
BL <- function(pValues, alpha, silent=FALSE) {
m <- length(pValues)
criticalValues <- sapply(1:m, function(i) 1-(1-min(1, (m*alpha)/(m-i+1)))^(1/(m-i+1)))
rejected <- SD(pValues, criticalValues)
index <- order(pValues) # index for sorting pValues
rindex <- order(index) # reversed index to obtain the original order
spval <- pValues[index]
adjPValues <- vector(mode="numeric",length=m)
adjPValues[1] <- min(1 - (1 - spval[1])^m, 1)
for (i in 2:m) adjPValues[i] <- max(adjPValues[i - 1], ifelse((alpha*m)/(m-i+1)<=1, ((m-i+1)/m)*(1 - (1 - spval[i])^(m - i + 1)), 0))#(0)?!
adjPValues <- adjPValues[rindex] # obtain the original order
#rejected <- (adjustedPValues <= alpha) # either this or SUD leads to rejected
if (! silent)
{
cat("\n\n\t\tBenjamini-Liu's (1999) step-down procedure\n\n")
printRejected(rejected, pValues, adjPValues)
}
return(list(adjPValues=adjPValues, criticalValues=criticalValues, rejected=rejected,
errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.BL <- function() { return(new(Class="MutossMethod",
label="Benjamini-Liu (1999) step-down",
errorControl="FDR",
callFunction="BL",
output=c("adjPValues", "criticalValues", "rejected", "errorControl"),
assumptions=c("Independent test statistics."),
info="<h2>Benjamini-Liu (1999) step-down </h2>\n\n
<h3>Reference:</h3>
<ul>
<li>Bejamini, Y. and Liu, W. (1999). \"<i> A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence . </i>\" Journal of Statistical Planning and Inference Vol. 82(1-2): 163-170. </li>\n
</ul>
<p>Benjamini-Liu's step-down procedure is applied to pValues.
The procedure controls the FDR if the corresponding test statistics are stochastically independent.
In Benjamini and Liu (1999) a large simulation study concerning the power of the two procedures suggested that the BL step-down procedure is more powerfull then the Linear Step-Up (BH) when the number of hypotheses is small.
This is also the case when most hypotheses are far from the null. The BL step-down method calculates critical values according to Benjamin and Liu (1999), i.e.
<i>c<sub>i</sub> = 1 - (1 - min(1, m*α/(m-i+1)))<sup>(1/(m-i+1))</sup></i> for <i>i = 1,...,m</i>,
where <i>m</i> is the number of hypotheses tested.
Then, let <i>k</i> be the smallest <i>i</i> for which <i>P<sub>(i)</sub> > c<sub>i</sub></i> and reject associated hypotheses <i>H<sub>(1)</sub>,...,H<sub>(k-1)</sub></i>.",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
#-------------------- BH Linear Step Up--------------------#
BH <- function(pValues, alpha, silent=FALSE) {
m <- length(pValues)
criticalValues <- sapply(1:m, function(i) (i*alpha)/m)
adjPValues <- p.adjust(pValues, "BH")
rejected <- (adjPValues <= alpha)
if (! silent)
{
cat("\n\n\t\tBenjamini-Hochberg's (1995) step-up procedure\n\n")
printRejected(rejected, pValues, adjPValues)
}
return(list(
adjPValues=adjPValues,
criticalValues=criticalValues,
rejected=rejected,
errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.BH <- function() { return(new(Class="MutossMethod",
label="Benjamini-Hochberg (1995) step-up",
errorControl="FDR",
callFunction="BH",
output=c("adjPValues", "criticalValues", "rejected", "errorControl"),
assumptions=c("independence or positive regression dependency"),
info="<h2>Benjamini-Hochberg (1995) Linear Step-Up Procedure </h2>\n\n\
<p>The Benjamini-Hochberg (BH) linear step-up procedure controls the FDR if the test statistics are stochastically independent or satisfy positive regression dependency (see Benjamini and Yekutieli 2001 for details).
In their seminal paper, Benjamini and Hochberg (1995) suggest the False Discovery Rate (FDR) as an alternative error criterion to the Family-Wise-Error-Rate and show that for <i>0<=m<sub>0</sub><=m</i> independent pValues corresponding to true null hypotheses
and for any joint distribution of the <i>m<sub>1</sub>=m-m<sub>0</sub></i> p-values corresponding to the non-null hypotheses the FDR is controlled at level <i>(m<sub>0</sub>/m)*α</i>.
Benjamini and Yekutieli show (2001) that this procedure controls the FDR in a much more general setting i.e. when the PRDS condition is satisfied.
#####Benjamini et al. (2006) improved by adaptive procedures which use an estimate of <i>m<sub>0</sub></i> and apply the BH method at level <i>α'=&alpha*m/m<sub>0</sub></i>, to fully exhaust the desired level <i>α</i>.</p>\n
<h3>References:</h3>\
<ul>\
<li>Benjamini, Y. and Hochberg, Y. (1995). \"<i> Controlling the false discovery rate: A practical and powerful approach to mulitple testing. </i>\" Journal of the Royal Statistical Society, Series B, 57:289-300. </li>\n\
<li>Benjamini, Y. and Yekutieli, D. (2001). \"<i> The control of the false discovery rate in multiple testing under dependency. </i>\" Annals of Statistics, 29(4):1165-1188. </li>\n\
<li>Benjamini, Y., Krieger, A. and Yekutieli, D. \"<i> Adaptive linear step-up procedures that control the false
discovery rate. </i>\" Biometrika, 93(3):491-507, 2006. </li>\n\
</ul>",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
BY <- function(pValues, alpha, silent=FALSE) {
m <- length(pValues)
a <- sum(1/(1:m))
criticalValues <- sapply(1:m, function(i) (i*alpha)/(a*m))
#rejected <- SU(pValues, criticalValues)
adjPValues <- p.adjust(pValues, "BY")
rejected <- (adjPValues <= alpha)
if (! silent)
{
cat("\n\n\t\tBenjamini-Yekutieli's (2001) step-up procedure\n\n")
printRejected(rejected, pValues, adjPValues)
}
return(list(adjPValues=adjPValues, criticalValues=criticalValues, rejected=rejected,
errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.BY <- function() { return(new(Class="MutossMethod",
label="Benjamini-Yekutieli (2001) step-up",
errorControl="FDR",
callFunction="BY",
output=c("adjPValues", "criticalValues", "rejected", "errorControl"),
assumptions=c("any dependency structure"),
info="<h2>Benjamini-Yekutieli (2001) step-up procedure </h2>\n\n\
<h3>Reference:</h3>\
<ul>\
<li>Bejamini, Y. and Yekutieli, D. (2001). \"<i> The control of the false discovery rate in multiple testing under dependency. </i>\" Annals of Statistics, 29(4):1165-1188. </li>\n\
</ul>
<p>The Benjamini-Yekutieli step-up procedure is applied to pValues.
The procedure ensures FDR control for any dependency structure.
The critical values of the Benjamini-Yekutieli (BY) procedure are calculated by
replacing the <i>α</i> of the Benjamini-Hochberg procedure by <i>α/(∑1/i)</i>, i.e.
<i>c(i)=i*α/m*(∑1/i)</i> for <i>i=1,...,m</i>. For large number <i>m</i> of hypotheses the critical values of the BY procedure and the
BH procedure differ by a factor <i>log(m)</i>. Benjamini and Yekutieli (2001) showed that this step-up procedure controls
the FDR at level <i>α*m/m<sub>0</sub></i> for any test statistics dependency structure.</p>\n",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
hochberg <- function(pValues, alpha, silent=FALSE) {
m <- length(pValues)
criticalValues <- sapply(1:m, function(i) alpha/(m-i+1))
#rejected <- SU(pValues, criticalValues)
adjPValues <- p.adjust(pValues, "hochberg")
rejected <- (adjPValues <= alpha)
if (! silent)
{
cat("\n\n\t\tHochberg's (1988) step-up procedure\n\n")
printRejected(rejected, pValues, adjPValues)
}
return(list(adjPValues=adjPValues, criticalValues=criticalValues, rejected=rejected,
errorControl = new(Class='ErrorControl',type="FWER",alpha=alpha)))
}
mutoss.hochberg <- function() { return(new(Class="MutossMethod",
label="Hochberg (1988) step-up",
errorControl="FWER",
callFunction="hochberg",
output=c("adjPValues", "criticalValues", "rejected", "errorControl"),
assumptions=c("independent tests"),
info="<h2>Hochberg (1988) step-up procedure </h2>\n\n\
<h3>Reference:</h3>\
<ul>\
<li>Hochberg, Y. (1988). <i> A sharper Bonferroni procedure for multiple tests of significance. </i> Biometrika, 75:800-802. </li>\n\
<li>Huang, Y. and Hsu, J. (2007). <i> Hochberg's step-up method: cutting corners off Holm's step-down method. </i>Biometrika, 94(4):965-975.</li>\n
</ul>
<p>The Hochberg step-up procedure is based on marginal p-values. It controls the FWER in the strong
sense under joint null distributions of the test statistics that satisfy Simes' inequality.
The Hochberg procedure is more powerful than Holm's (1979) procedure, but the test statistics need to be
independent or have a distribution with multivariate total positivity of order two or a scale mixture
thereof for its validity (Sarkar, 1998).
Both procedures use the same set of critical values <i>c(i)=α/(m-i+1)</i>. Whereas Holm's procedure is a step-down
version of the Bonferroni test, and Hochberg's is a step-up version of the Bonferroni test.
Note that Holm's method is based on the Bonferroni inequality and is valid regardless of the joint
distribution of the test statistics.</p>\n",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
adaptiveBH <- function(pValues, alpha, silent=FALSE) {
m <- length(pValues)
pi0.ABH <- ABH_pi0_est(pValues)$pi0
criticalValues <- sapply(1:m, function(i) (i*alpha)/(m*pi0.ABH))
adjPValues <- p.adjust(pValues,"BH")*pi0.ABH
rejected <- (adjPValues <= alpha)
if (! silent)
{
cat("\n\n\t\tBenjamini-Hochberg (2000) adaptive step-up procedure\n\n")
printRejected(rejected, pValues, adjPValues)
}
return(list(adjPValues=adjPValues, criticalValues=criticalValues, rejected=rejected, pi0=pi0.ABH,
errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.adaptiveBH <- function() { return(new(Class="MutossMethod",
label="Benjamini-Hochberg (2000) adaptive step-up",
errorControl="FDR",
callFunction="adaptiveBH",
output=c("adjPValues", "criticalValues", "rejected", "pi0", "errorControl"),
assumptions=c("independence or positive regression dependency"),
info="<h2>Benjamini-Hochberg (2000) adaptive linear step-up procedure </h2>\n\n\
<h3>Reference:</h3>\
<ul>\
<li>Benjamini, Y. and Hochberg, Y. (2000). <i> On the Adaptive Control of the False Discovery Rate
in Multiple Testing With Independent Statistics. </i> Journal of Educational and Behavioral Statistics, 25(1): 60-83. </li>\n\
<li>Benjamini, Y. and Hochberg, Y. (1995). <i> Controlling the false discovery rate: A practical and powerful approach to mulitple testing.
</i>Journal of the Royal Statistical Society, Series B, 57:289-300. </li>\n\
<li> Hochberg, Y. and Benjamini, Y. (1990). <i>More powerful procedures for multiple significance testing. </i>
Statistics in Medicine 9, 811-818.</li>\n
</ul>
<p>The adaptive Benjamini-Hochberg step-up procedure is applied to pValues.
It controls the FDR at level alpha for independent or positive regression dependent test statistics.
In the adaptive Benjamini-Hochberg step-up procedure the number of true null hypotheses is estimated first as in Hochberg and
Benjamini (1990), and this estimate is used in the procedure of Benjamini and
Hochberg (1995) with alpha'=alpha*m/m0. The method for estimating m<sub>0</sub> is motivated by
the graphical approach proposed by Schweder and Spjotvoll (1982),
as developed and presented in Hochberg and Benjamini (1990).</p>\n",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
#---------------------- Adaptive STS-----------------#
adaptiveSTS <- function(pValues, alpha, lambda=0.5, silent=FALSE) {
m <- length(pValues)
adjP <- p.adjust(pValues,"BH")
pi0 <- storey_pi0_est(pValues, lambda)$pi0
criticalValues <- sapply(1:m, function(i) (i*alpha)/(m*pi0))
adjPValues <- adjP*min(pi0, 1)
rejected <- (adjPValues <= alpha)
if (! silent)
{
cat("\n\n\t\tStorey-Taylor-Siegmund (2004) adaptive step-up procedure\n\n")
printRejected(rejected, pValues, adjPValues)
}
return(list(adjPValues=adjPValues, criticalValues=criticalValues, rejected=rejected, pi0=pi0,
errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.adaptiveSTS <- function() { return(new(Class="MutossMethod",
label="Storey-Taylor-Siegmund (2004) adaptive step-up",
errorControl="FDR",
callFunction="adaptiveSTS",
output=c("adjPValues", "criticalValues", "rejected", "pi0", "errorControl"),
assumptions=c("test independence or positive regression dependency"),
info="<h2>Storey-Taylor-Siegmund (2004) adaptive step-up procedure</h2>\n\n
<p> The adaptive STS method uses a conservative estimate of <i>pi0</i> which is plugged in a linear step-up procedure. The estimation of <i>pi0</i> requires a parameter <i>λ</i> which is set to <i>0.5</i> by default.
Note that the estimated <i>pi0</i> is truncated at 1 as suggested by the author, so the implemetation of the procedure is not entirely supported by the proof in the reference.
</p>\n
<h3>Reference:</h3>
<ul>
<li>Storey, J.D., Taylor, J.E. and Siegmund, D. \"<i> Strong control, conservative point estimation and
simultaneous conservative consistency of false discovery rates: a unified approach.</i>\" Journal of the Royal Statistical Society, B 66(1):187-205, 2004. </li>\n
</ul>",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"), lambda=list(type="numeric", default = 0.5))
)) }
#---------------------------- Sidack Step Down--------------------------------#
SidakSD <- function(pValues, alpha, silent=FALSE) {
m <- length(pValues)
criticalValues <- sapply(1:m, function(i) 1-(1-alpha)^(1/(m-i+1)))
#rejected <- SD(pValues, criticalValues)
tmp <- mt.rawp2adjp(pValues, "SidakSD")
adjPValues <- tmp$adjp[order(tmp$index),2]
rejected <- (adjPValues <= alpha)
if (! silent)
{
cat("\n\n\tSidak-like (1987) step-down procedure\n\n")
printRejected(rejected, pValues, NULL)
}
return(list(adjPValues=adjPValues, criticalValues=criticalValues, rejected=rejected,
errorControl = new(Class='ErrorControl',type="FWER",alpha=alpha)))
}
mutoss.SidakSD <- function() { return(new(Class="MutossMethod",
label="Sidak-like (1987) step-down",
errorControl="FWER",
callFunction="SidakSD",
output=c("adjPValues", "criticalValues", "rejected", "errorControl"),
assumptions=c("test independence","positive orthant dependent test statistics"),
info="<h2>Sidak-like (1987) step-down procedure </h2>\n\n\
<h3>Reference:</h3>\
<ul>\
<li>Hollander, B.S. and Covenhaver, M.D. \"<i> An Improved Sequentially Rejective Bonferroni Test Procedure.</i>\" Biometrics, 43(2):417-423, 1987. </li>\n\
</ul>
<p> The Sidak-like step-down procedure is an improvement over Holm's (1979) step-down procedure. The improvement is analogous to the Sidak's correction over the original Bonferroni procedure. This Sidak-like step-down procedure assumes positive orthant dependent test statistics. </p>\n",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
)) }
#----------------------------------Blanchard Roquain 2008 ----------------------#
indepBR <- function(pValues, alpha, lambda=1, silent = FALSE)
{
if ( lambda <= 0 || lambda >= 1/alpha) {
stop('indepBR() : lambda should belong to (0, 1/alpha)')
}
len <- length(pValues)
criticalValues <- sapply( 1:len, function(i) alpha * min( i * ( 1 - lambda * alpha) / (len - i + 1) , lambda ) )
rejected <- SU(pValues, criticalValues)
if (! silent)
{
cat("\n\n\t\t Blanchard-Roquain 1-stage step-up under independence (2009)\n\n")
printRejected(rejected, pValues)
}
return(list(rejected = rejected, criticalValues = criticalValues,
errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.indepBR <- function() { return(new(Class="MutossMethod",
label="Blanchard-Roquain adaptive step-up (2009)",
errorControl="FDR",
callFunction="indepBR",
output=c("criticalValues", "rejected", "errorControl"),
assumptions=c("p-value independence"),
info="<h2> Blanchard-Roquain (2009) 1-stage adaptive step-up </h2>\n\n\
<h3>Reference:</h3>\
<ul>\
<li>Blanchard, G. and Roquain, E. \"<i> Adaptive False Discovery Rate Control under Independence and Dependence.</i>\"
Journal of Machine Learning Research 10:2837-2871, 2009. . </li>\n\
</ul>
<p>This is a step-up procedure with critical values\n\
C<sub>i</sub> = alpha * min( i * ( 1 - lambda * alpha) / (m - i + 1) , lambda )\n\
where alpha is the level at which FDR should be controlled and lambda an \
arbitrary parameter belonging to (0, 1/alpha) with default value 1. \
This procedure controls FDR at the desired level when the p-values are independent.</p>",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"), lambda=list(type="numeric", default=1))
)) }
#----------------------------Blanchard Roquain 2009---------------------#
twostageBR <- function(pValues, alpha, lambda=1, silent = FALSE)
{
if ( lambda <= 0 || lambda >= 1/alpha) {
stop('twostageBR() : lambda should belong to (0, 1/alpha)')
}
m <- length(pValues)
stage1 <- indepBR( pValues, alpha, lambda, silent = TRUE)
pi0inv <- ( 1 - lambda*alpha )*m / ( m + 1 - sum(stage1$rejected) )
BHadjPValues <- p.adjust(pValues,"BH")
rejected <- ( BHadjPValues <= alpha*pi0inv )
if (! silent)
{
cat("\n\n\t\tBlanchard-Roquain (2009) 2-stage step-up Procedure\n\n")
printRejected(rejected, pValues)
}
return(list(rejected=rejected, errorControl = new(Class='ErrorControl',type="FDR",alpha=alpha)))
}
mutoss.twostageBR <- function() { return(new(Class="MutossMethod",
label="Blanchard-Roquain 2-stage adaptive step-up (2009)",
errorControl="FDR",
callFunction="twostageBR",
output=c("rejected", "errorControl"),
assumptions=c("p-value independence"),
info="<h2> Blanchard-Roquain 2-stage step-up under independence </h2>\n\n\
<h3>Reference:</h3>\
<ul>\
<li>Blanchard, G. and Roquain, E. \"<i> Adaptive False Discovery Rate Control under Independence and Dependence.</i>\"
Journal of Machine Learning Research 10:2837-2871, 2009. . </li>\n\
</ul>\
<p>This is an adaptive linear step-up procedure where the proportion of true\
nulls is estimated using the Blanchard-Roquain 1-stage procedure with parameter lambda,\
via the formula\n\
estimated pi<sub>0</sub> = ( m - R(alpha,lambda) + 1) / ( m*( 1 - lambda * alpha ) )\n\
where R(alpha,lambda) is the number of hypotheses rejected by the BR 1-stage procedure,
alpha is the level at which FDR should be controlled and lambda an
arbitrary parameter belonging to (0, 1/alpha) with default value 1.
This procedure controls FDR at the desired level when the p-values are independent.</p>",
parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"), lambda=list(type="numeric",default=1))
)) }
|