File: fisher.R

package info (click to toggle)
r-cran-mutoss 0.1-13-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,560 kB
  • sloc: sh: 13; makefile: 2
file content (179 lines) | stat: -rw-r--r-- 5,029 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#############
# Fisher 23 #
#############


fisher23.model <- function() {
	return(list(model=list(typ="Fisher 2-by-3")))
}

mutoss.fisher23.model <- function() { return(new(Class="MutossMethod",
					label="Fisher's exact test in (2x3) tables",
					callFunction="fisher23.model",
					output=c("model"),
					info="<h2></h2>
							<p>(Marginal) Fisher's exact test in (2x3) tables</p> 
							<p></p>
							<h3>Reference:</h3>
							<ul>
							<li>Fisher, R. A. (1922). \"<i>On the interpretation of Chi^2 from contingency tables, and the calculation of P.</i>\" Journal of the Royal Statistical Society, 85 (1):87-94.</li>
							</ul>",
					parameters=list(
					)
			)) }


fisher23.marginal <- function(data, model) {
	#m <- dim(data)[3]
	#result <- vector(mode="numeric",length=m)
	result <- apply(data, 3, function(x) {fisher23_fast(x,2.0e-16)$rand_p} )
	return(list(pValues=result))
}


fisher23_fast <- function(obs, epsilon){
# obs = observations = a 2x3 table
	
#build marginals = (n1., n2., n.1, n.2, n.3)
	marginals <- c(sum(obs[1, ]), sum(obs[2, ]), sum(obs[, 1]), sum(obs[, 2]), sum(obs[, 3]))
	
	n <- sum(marginals) / 2
	
	x <- array(data=rep.int(0.0, 2*3*max(marginals)*max(marginals)), c(2, 3, max(marginals)*max(marginals)))
	
#build log nominator statistic
	log_nom <- sum(log(gamma(marginals+1))) - log(gamma(n+1))
	
#build log denominator statistic
	log_denom <- sum(log(gamma(obs+1)))
	
	
#compute probability of observed table
	prob_table <- exp(log_nom - log_denom)
	
	
	nonrand_p <- 0.0
	rand_count <- 0
	
	dim1 <- min(marginals[1], marginals[3])
	
#traverse all possible tables with given marginals
	counter <- 0
	
	for (k in 0:dim1)
	{
		for (l in max(0,marginals[1]-marginals[5]-k):min(marginals[1]-k, marginals[4]))
		{
			counter <- counter+1
			x[1, 1, counter] <- k
			x[1, 2, counter] <- l
			x[1, 3, counter] <- marginals[1] - x[1, 1, counter] - x[1, 2, counter]
			x[2, 1, counter] <- marginals[3] - x[1, 1, counter]
			x[2, 2, counter] <- marginals[4] - x[1, 2, counter]
			x[2, 3, counter] <- marginals[5] - x[1, 3, counter]
		}
	}
	
	log_denom_iter <- rep.int(0.0, times=counter)
	for (k in 1:counter)
	{
		log_denom_iter[k] <- sum(log(gamma(x[, , k]+1)))
	}
	prob_lauf <- exp(log_nom - log_denom_iter)
	nonrand_p <- sum(prob_lauf[prob_lauf <= prob_table])        
	rand_count <- sum(abs(exp(prob_lauf) - exp(prob_table)) < epsilon)        
	
	u <- runif(1)
	rand_p <- max(0.0, nonrand_p - u*rand_count*prob_table)
	
	return(list(nonrand_p=nonrand_p, rand_p=rand_p, prob_table=prob_table))
}


#############
# Fisher 22 #
#############


fisher22.model <- function() {
	return(list(model=list(typ="Fisher 2-by-2")))
}


mutoss.fisher22.model <- function() { return(new(Class="MutossMethod",
					label="Fisher's exact test in (2x2) tables",
					callFunction="fisher22.model",
					output=c("model"),
					info="<h2></h2>
							<p>(Marginal) Fisher's exact test in (2x2) tables</p> 
							<p></p>
							<h3>Reference:</h3>
							<ul>
							<li>Fisher, R. A. (1922). \"<i>On the interpretation of Chi^2 from contingency tables, and the calculation of P.</i>\" Journal of the Royal Statistical Society, 85 (1):87-94.</li>
							</ul>",
					parameters=list(
					)
			)) }


fisher22.marginal <- function(data, model) {
	#m <- dim(data)[3]
	#result <- vector(mode="numeric",length=m)
	result <- apply(data, 3, function(x) {fisher22_fast(x,2.0e-16)$rand_p} )
	return(list(pValues=result))
}


fisher22_fast <- function(obs, epsilon){
# obs = observations = a 2x2 table
	
#build marginals = (n1., n2., n.1, n.2)
	marginals <- c(sum(obs[1, ]), sum(obs[2, ]), sum(obs[, 1]), sum(obs[, 2]))
	
	n <- sum(obs)
	
	x <- array(data=rep.int(0.0, 2*2*max(marginals)*max(marginals)), c(2, 2, max(marginals)*max(marginals)))
	
#build log nominator statistic
	log_nom <- sum(log(gamma(marginals+1))) - log(gamma(n+1))
	
#build log denominator statistic
	log_denom <- sum(log(gamma(obs+1)))
	
	
#compute probability of observed table
	prob_table <- exp(log_nom - log_denom)
	
	
	nonrand_p <- 0.0
	rand_count <- 0
	
	dim1 <- min(marginals[1], marginals[3])
	
#traverse all possible tables with given marginals
	counter <- 0
	
	for (k in (marginals[1]-marginals[4]):dim1)
	{
		counter <- counter+1
		x[1, 1, counter] <- k
		x[1, 2, counter] <- marginals[1] - k
		x[2, 1, counter] <- marginals[3] - k
		x[2, 2, counter] <- marginals[2] - x[2, 1, counter]
	}
	
	log_denom_iter <- rep.int(0.0, times=counter)
	for (k in 1:counter)
	{
		log_denom_iter[k] <- sum(log(gamma(x[, , k]+1)))
	}
	prob_lauf <- exp(log_nom - log_denom_iter)
	nonrand_p <- sum(prob_lauf[prob_lauf <= prob_table])        
	rand_count <- sum(abs(exp(prob_lauf) - exp(prob_table)) < epsilon)        
	
	u <- runif(1)
	rand_p <- max(0.0, nonrand_p - u*rand_count*prob_table)
	
	return(list(nonrand_p=nonrand_p, rand_p=rand_p, prob_table=prob_table))
}