1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#
#
# Author: FrankKonietschke
###############################################################################
gao<-function(formula, data, alpha = 0.05, control = NULL , silent = FALSE){
dat <- model.frame(formula, data)
if (ncol(dat) != 2) {
stop("Specify one response and only one class variable in the formula !")
}
if (is.numeric(dat[, 1]) == FALSE) {
stop("Response variable must be numeric !")
}
response <- dat[, 1]
group <- as.factor(dat[, 2])
fl <- levels(group)
a <- nlevels(group)
N <- length(response)
n <- aggregate(response,list(group),FUN="length")$x
if (any(n <= 2)) {
warn <- paste("The factor level", fl[n <= 2], "has got less than two observations!")
stop(warn)
}
if (is.null(control)) {
cont <- 1
}
if(! is.null(control)){
if (!any(fl == control)) {
stop("The dataset doesn't contain this control group!")
}
cont <- which(fl == control)
}
C<-contrMat(1:a,"Dunnett",base=cont)
# ------------- Compute the pseudo-ranks------------------ #
#browser()
rx <- c()
for (i in 1:N){
help <- expand.grid(response[i],response)
help1 <- (help[,1]>help[,2])+1/2*(help[,1]== help[,2])
help2 <- data.frame(h1=help1,h2=group)
samples2 <- split(help2$h1, help2$h2)
pseudo <- sapply(1:a, function(arg) {
mean(samples2[[arg]])
})
rx[i] <-N*mean(pseudo)
}
new.data <-data.frame(res=rx,group=group)
# ------------------ Point estimators ---------------------#
pd <- 1/N*aggregate(new.data$res,list(group), FUN="mean")$x
Cpd <- C%*%pd
# ------------ Compute the variance estimators ----------- #
v1 <- 1/N^2*aggregate(new.data$res,list(group),FUN="var")$x
lambda <- N/n
v11 <-c(v1*lambda)
v2 <- diag(v1*lambda)
Cv <- C%*%v2%*%t(C)
# ------------------ Test Statistics ----------------------#
T <-sqrt(N)*Cpd / sqrt(c(diag(Cv)))
# ------------------ Degrees of freedom--------------------#
ncont <-which((1:a)!= cont)
numerator <- c(diag(Cv))^2
denu1<-v1[cont]^2/(n[cont]^2*(n[cont]-1))
denu2 <- v1[ncont]^2 /(n[ncont]^2*(n[ncont]-1))
denu <- N^2*(denu1 + denu2)
df <- numerator / denu
#-------------------------p-Values ------------------------#
pv<- c()
for (h in 1:(a-1)){
pv[h]<- min(2*pt(T[h],df[h]),2-2*pt(T[h],df[h]))
}
adj.p <- p.adjust(pv,"hochberg")
Rejected <- (adj.p<=alpha)
#------------------- Build the output ---------------------#
vj <- which((1:a) != cont)
vi <- rep(cont, a - 1)
cmpid <- sapply(1:(a-1), function(arg) {
i <- vi[arg]
j <- vj[arg]
paste("F", "(", fl[j], ")", "-","F","(" ,fl[i],")", sep = "")
})
result <- data.frame(Comparison=cmpid, Estimator = Cpd, df=df, Statistic = T, P.Raw=pv,P.Adj=adj.p,Rejected = Rejected )
rownames(result)<-1:(a-1)
output = list(Info=data.frame(Sample=fl, Size=n, Single.Effects=pd),
Analysis=result)
if (! silent)
{
cat("#----Xin Gao's (2008) Non-Parametric Multiple Test Procedure","\n")
cat("#----Type of Adjustment: Hochberg", "\n")
cat("#----Level of significance", "=", alpha ,"\n")
cat("#----The procedure compares if the distribution functions F() are equal. The FWER is strongly controlled", "\n")
print(result)
}
return(output)
}
gao.wrapper <- function(model, data, alpha, control) {
control <- NULL
result <- gao(formula=formula(model),
data=data,
alpha = alpha,control)
pvalues <- result$Analysis$P.Adj
estimates <- result$Analysis$Estimator
confint <- cbind(estimates, rep(NA, length(estimates)),rep(NA,length(estimates)))
rownames(confint)<-result$Analysis$Comparison
rejected1 <- result$Analysis$Rejected
return(list(adjPValues=pvalues,rejected=rejected1,confIntervals= confint,
errorControl = new(Class='ErrorControl',type="FWER",alpha=alpha)))
}
mutoss.gao <- function() { return(new(Class="MutossMethod",
label="Nonparametric Multiple contrast tests",
errorControl="FWER",
callFunction="gao.wrapper",
output=c("adjPValues", "rejected","confIntervals","errorControl"),
info="<h2>Nonparametric multiple contrast tests</h2>
<p> This function computes Xin Gao's nonparametric multiple test procedures in an unbalanced one way layout. <p>
<p></p>
<h3>Reference:</h3>
<ul>
<li>Gao, X. et al. \"<i>Nonparametric multiple comparison procedures for unbalanced one-way factorial designs.</i>\" Journal of Statistical Planning and Inference, 77, 2574-2591, 2008.</li>
</ul>",
parameters=list(model=list(type="ANY"),
hypotheses=list(type="ANY"),
alpha=list(type="numeric")
)
)) }
|