1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
# TODO: Add comment
#
# Author: wiebke
###############################################################################
#### one sample model ####
onesamp.model <- function() {
return(list(model=list(typ="onesamp")))
}
mutoss.onesamp.model <- function() { return(new(Class="MutossMethod",
label="One-sample test",
callFunction="onesamp.model",
output=c("model"),
info="<h2>One sample model</h2>
<p>The input for this one sample model is a data matrix whose columns represent the samples and the rows represent the multiple endpoints.
E.g. for genomics this would be a gene matrix, where each row gives the expression for a single gene.</p>
<p> For the next steps you have the following choices:</p>
<p> Either marginal hypotheses tests (if robust Wilcoxon otherwise t-test) could be performed on each row of the
data matrix to obtain raw p-values which then need to be adjusted for multiplicity to control a chosen error rate.</p>
<p> Or resampling based methods could be performed based on Dudoit and van der Laan (2007) to obtain adjusted p-values which control the
FWER. Afterwards it is possible to use augmentation procedures to get adjusted p-values for control of FDR, FDX or gFWER.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>
</ul>",
parameters=list(
)
)) }
onesamp.marginal <- function(data, robust, alternative, psi0) {
result <- NULL
if (robust) {
result <- apply(data, 1, function(x) {wilcox.test(x, alternative=alternative, mu=psi0)$p.value} )
} else {
result <- apply(data, 1, function(x) {t.test(x ,alternative=alternative, mu=psi0)$p.value} )
}
return(list(pValues=result))
}
mutoss.onesamp.marginal.model <- function(model) {
return("typ" %in% names(model) && model$typ == "onesamp")
}
mutoss.onesamp.marginal <- function() { return(new(Class="MutossMethod",
label="One-sample test",
callFunction="onesamp.marginal",
output=c("pValues"),
info="<h2>Marginal one sample test.</h2>
<p>The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a t-test will be performed.</p>
<h3>Reference:</h3>
<ul>
<li>Wilcoxon, F. (1945). <i>Individual Comparisons by Ranking Methods.</i> Biometrics Bulletin 1:80-83.</li>\n\
<li>Mann, H. and Whitney, D. (1947). <i>On a test of whether one of two random variables is stochastically larger
than the other.</i> Annals of Mathematical Statistics 18:50-60</li>\n\
<li>Student (1908).<i>The probable error of a mean.</i> Biometrika, 6(1):1-25.</li>\n
</ul>",
parameters=list(
data=list(type="ANY"),
robust=list(type="logical", label="Robust statistic"),
alternative=list(type="character", label="Alternative", choices=c("two.sided", "less", "greater")),
psi0=list(type="numeric", label="Hypothesized null value", default=0)
)
)) }
#### two sample model ####
twosamp.model <- function(classlabel) {
classlabel <- as.vector(classlabel)
return(list(model=list(typ="twosamp", classlabel=classlabel)))
}
mutoss.twosamp.model <- function() { return(new(Class="MutossMethod",
label="Two sample test",
callFunction="twosamp.model",
output=c("model"),
info="<h2>Two sample model</h2>
<p>The input for this one sample model is a data matrix whose columns represent the samples and the rows represent the multiple endpoints.
E.g. for genomics this would be a gene matrix, where each row gives the expression for a single gene.</p>
<p> Furthermore, a classlabel needs to be provided to distinguish the two sample groups.
<p> For the next steps you have the following choices:</p>
<p> Either marginal hypotheses tests (if robust Wilcoxon otherwise t-test) could be performed on each row of the
data matrix to obtain raw p-values which then need to be adjusted for multiplicity to control a chosen error rate.</p>
<p> Or resampling based methods could be performed based on Dudoit and van der Laan (2007) to obtain adjusted p-values which control the
FWER. Afterwards it is possible to use augmentation procedures to get adjusted p-values for control of FDR, FDX or gFWER.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>
</ul>",
parameters=list(
classlabel=list(type="RObject", label="classlabel")
)
)) }
twosamp.marginal <- function(data, model, robust, alternative, psi0, equalvar) {
label <- as.numeric(as.factor(model$classlabel))
result <- NULL
if (robust) {
result <- apply(data, 1, function(x) {wilcox.test(x=x[ ,label==1], y=x[label==2], alternative=alternative, mu=psi0)$p.value} )
} else {
result <- apply(data, 1, function(x) {t.test(x=x[ ,label==1], y=x[label==2], alternative=alternative, mu=psi0, equal.var=equalvar)$p.value} )
}
return(list(pValues=result))
}
mutoss.twosamp.marginal.model <- function(model) {
return("typ" %in% names(model) && model$typ == "twosamp")
}
mutoss.twosamp.marginal <- function() { return(new(Class="MutossMethod",
label="Two sample test",
callFunction="twosamp.marginal",
output=c("pValues"),
info="<h2></h2>
<p>The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a two-sample t-test will be performed.</p>
<h3>Reference:</h3>
<ul>
<li>Wilcoxon, F. (1945). <i>Individual Comparisons by Ranking Methods.</i> Biometrics Bulletin 1:80-83.</li>\n\
<li>Mann, H. and Whitney, D. (1947). <i>On a test of whether one of two random variables is stochastically larger
than the other.</i> Annals of Mathematical Statistics 18:50-60</li>\n
</ul>",
parameters=list(
data=list(type="ANY"),
model=list(type="ANY"),
robust=list(type="logical", label="Robust statistic"),
alternative=list(type="character", label="Alternative", choices=c("two.sided", "less", "greater")),
psi0=list(type="numeric", label="Hypothesized null value", default=0),
equalvar=list(type="logical", label="Equal variance")
)
)) }
### paired sample model ###
paired.model <- function(classlabel) {
classlabel <- as.vector(classlabel)
return(list(model=list(typ="pairedsamp", classlabel=classlabel)))
}
mutoss.paired.model <- function() { return(new(Class="MutossMethod",
label="Paired sample test",
callFunction="paired.model",
output=c("model"),
info="<h2>Paired sample test</h2>
<p>The robust version uses the Wilcoxon signed rank test, otherwise a paired t-test will be performed.</p>
<p>The input for this paired sample model is a data matrix whose columns represent the samples and the rows represent the multiple endpoints.
E.g. for genomics this would be a gene matrix, where each row gives the expression for a single gene.</p>
<p> Furthermore, a classlabel needs to be provided to distinguish the two paired groups. The arrangement of group indices does not matter, as long
as the columns are arranged in the same corresponding order between groups. For example, if group 1 is code as 0 and group 2 is
coded as 1, for 3 pairs of data, it does not matter if the classlabel is coded as (0,0,0,1,1,1) or (1,1,1,0,0,0) or (0,1,0,1,0,1)
or (1,0,1,0,1,0), the paired differences between groups will be calculated as group2 - group1.
</p>
<p> For the next steps you have the following choices:</p>
<p> Either marginal hypotheses tests (if robust Wilcoxon otherwise t-test) could be performed on each row of the
data matrix to obtain raw p-values which then need to be adjusted for multiplicity to control a chosen error rate.</p>
<p> Or resampling based methods could be performed based on Dudoit and van der Laan (2007) to obtain adjusted p-values which control the
FWER. Afterwards it is possible to use augmentation procedures to get adjusted p-values for control of FDR, FDX or gFWER.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>
</ul>",
parameters=list(
classlabel=list(type="RObject", label="classlabel")
)
)) }
paired.marginal <- function(data, model, robust, alternative, psi0, equalvar) {
label <- as.numeric(as.factor(model$classlabel))
result <- NULL
if (robust) {
result <- apply(data, 1, function(x) {wilcox.test(x=x[label==1], y=x[label==2], alternative=alternative, mu=psi0, paired=TRUE, var.equal=equalvar)$p.value} )
} else {
result <- apply(data, 1, function(x) {t.test(x=x[label==1], y=x[label==2], alternative=alternative, mu=psi0, paired=TRUE, var.equal=equalvar)$p.value} )
}
return(list(pValues=result))
}
mutoss.paired.marginal <- function() { return(new(Class="MutossMethod",
label="Paired sample test",
callFunction="paired.marginal",
output=c("pValues"),
info="<h2></h2>
<p>The robust version uses the Wilcoxon test, otherwise a paired t-test will be performed.</p>
<p>A vector of classlabels needs to be provided to distinguish the two paired groups. The arrangement of group indices does not matter, as long
as the columns are arranged in the same corresponding order between groups. For example, if group 1 is code as 0 and group 2 is
coded as 1, for 3 pairs of data, it does not matter if the classlabel is coded as (0,0,0,1,1,1) or (1,1,1,0,0,0) or (0,1,0,1,0,1)
or (1,0,1,0,1,0), the paired differences between groups will be calculated as group2 - group1. </p>
<p>You could either choose a valid R object to load as classlabels or you could provide it manually by inserting e.g. c(0,1,0,1,0,1) or rep(c(0,1), each=5) or rep(c(0,1), 5). </p>",
parameters=list(
data=list(type="ANY"),
model=list(type="ANY"),
robust=list(type="logical", label="Robust statistic"),
alternative=list(type="character", label="Alternative", choices=c("two.sided", "less", "greater")),
psi0=list(type="numeric", label="Hypothesized null value", default=0),
equalvar=list(type="logical", label="Equal variance")
)
)) }
mutoss.paired.marginal.model <- function(model) {
return("typ" %in% names(model) && model$typ == "pairedsamp")
}
### f test model ###
ftest.model <- function(classlabel) {
classlabel <- as.vector(classlabel)
return(list(model=list(typ="ftest", classlabel=classlabel)))
}
mutoss.ftest.model <- function() { return(new(Class="MutossMethod",
label="F test",
callFunction="ftest.model",
output=c("model"),
info="<h2>F test</h2>
<p>The input for this F test model is a data matrix whose columns represent the samples and the rows represent the multiple endpoints.
E.g. for genomics this would be a gene matrix, where each row gives the expression for a single gene.</p>
<p> Furthermore, a classlabel needs to be provided to distinguish k sample groups.</p>
<p> For the next steps you have the following choices:</p>
<p> Either marginal hypotheses tests (if robust Kruskal-Wallis test, otherwise F-test) could be performed on each row of the
data matrix to obtain raw p-values which then need to be adjusted for multiplicity to control a chosen error rate.</p>
<p> Or resampling based methods could be performed based on Dudoit and van der Laan (2007) to obtain adjusted p-values which control the
FWER. Afterwards it is possible to use augmentation procedures to get adjusted p-values for control of FDR, FDX or gFWER.</p>
<h3>Reference:</h3>
<ul>
<li>Dudoit, S. and van der Laan, M.J. (2007). <i>Mulitple Testing Procedures and Applications to Genomics.</i> Springer Series in Statistics.</li>
</ul>",
parameters=list(
classlabel=list(type="RObject", label="classlabel")
)
)) }
ftest.marginal <- function(data, model, robust) {
label <- as.numeric(as.factor(model$classlabel))
result <- NULL
if (robust) {
result <- apply(data, 1, function(x) {kruskal.test(x=x, g=label)$p.value} )
} else {
result <- apply(data, 1, function(x) { out=x
anova(lm( out ~ label ))$'Pr(>F)'[1]} )
}
return(list(pValues=result))
}
mutoss.ftest.marginal <- function() { return(new(Class="MutossMethod",
label="F test",
callFunction="ftest.marginal",
output=c("pValues"),
info="<h2></h2>
<p>Robust = Kruskal-Wallis test. Otherwise F-test.</p>
<p></p>
<h3>Reference:</h3>
<ul>
<li>Kruskal, W.H. und Wallis, W.A. (1952). <i>Use of ranks in one-criterion variance analysis.</i> JASA, 47:583-621</li>
</ul>",
parameters=list(
data=list(type="ANY"),
model=list(type="ANY"),
robust=list(type="logical", label="Robust statistic")
)
)) }
mutoss.ftest.marginal.model <- function(model) {
return("typ" %in% names(model) && model$typ == "ftest")
}
|