File: moreSUDprocedures.R

package info (click to toggle)
r-cran-mutoss 0.1-13-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,560 kB
  • sloc: sh: 13; makefile: 2
file content (264 lines) | stat: -rw-r--r-- 7,955 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# 
# Author: JonathanRosenblatt
###############################################################################



#---------- Service Functions---------#

reject<- function(sorted, criticals){
	m<- length(sorted)
	stopifnot( length(criticals) == m )
	indicators<-  sorted<criticals # Marking p-values below the critical values
	
	if(!any(indicators)) {
		return(list(cutoff=0,cut.index=0))
	}
	
	cut.index<- max((1:m)[indicators])
	
	cutoff<- sorted[cut.index] #The highest rejected p-value
	
	return( list(cutoff=cutoff,cut.index=cut.index) )
}

bh.adjust<- function(sorted, m, m0, constant=1){
	adjusted<- rep(NA,m)
	temp.min<- sorted[m]
	min.ind<- rep(0,m)    
	for (i in m:1) {
		temp<- min(m0*sorted[i]*constant / i, 1)
		if  ( temp <= temp.min  ) {
			temp.min <- temp
			min.ind[i]<- 1
		}
		adjusted[i]<- temp.min
	}
	return(adjusted)
}




linearStepUp<- function(sorted, q, m, adjust=FALSE, m0=m, pi0, constant=1){
	if(missing(m0) & !missing(pi0)) {
		m0=pi0*m
	}
	else{
		
		criticals<- (1:m)*q/(m0*constant)
		cutoff<- reject(sorted,criticals)
		rejected<-  sorted<=cutoff$cutoff
		
		adjusted=rep(NA,m)
		
		if(adjust) {
			adjusted<-bh.adjust(sorted,m=m,m0=m0,constant=constant)
		}
		
		multiple.pvals<- data.frame(
				original.pvals=sorted,
				criticals=criticals,
				rejected=rejected,
				adjusted.pvals=adjusted)
		output<- list(Cutoff=cutoff,Pvals=multiple.pvals)
		return(output)
	}
	
}

#---------------Two Stage------------------#
solve.q<- function(sorted, m, j, r){
	##TODO: [JR] correct problem: when all pvalues are rejected a might be negative
	a<- sorted*(m-r)/(1:m)
	#stopifnot(a>0 , j>=1 , j<=m , r>=0 , r<=m) 
	adjusted<- ifelse(a>0.5, 1 , a/(1-a) )
	temp.min<- adjusted[m]
	for(i in m:j){
		if(adjusted[i]<=temp.min) temp.min<- adjusted[i]
		else adjusted[i]<- temp.min
	}
	return(adjusted)
}# Close solve.q function

two.stage.adjust<- function(sorted, r=0, patience=4, m){
	adjusted<- rep(0,m)  
	
	# Adjusting sorted p-values
	adjusted.q<- solve.q(sorted=sorted,m=m,j=1,r=0)
	checking<- adjusted.q
	
	#Has the procedure rejected everything at the first stage?
	if(sum(linearStepUp(sorted,adjusted.q[1]/(1+adjusted.q[1]),m=m)$Pvals[['rejected']])==m){
		adjusted.q<- rep(adjusted.q[1],m)
		return(adjusted.q)
	}
	
	else{
		for (j in 1:m) { 
			delta.r<- 1
			delta.q<- 1
			new.q<- adjusted.q[j]
			r.new<- sum(linearStepUp(sorted,new.q/(1+new.q),m=m)$Pvals[['rejected']])
			counter<- 0
			max.q<- 0
			
			while(delta.r>0 & delta.q>0){
				old.q<- new.q
				r.old<- r.new
				new.q<- solve.q(sorted=sorted,m=m,j=j,r=r.old)[j]
				r.new<- sum(linearStepUp(sorted,new.q/(1+new.q),m=m)$Pvals[['rejected']])
				delta.r<- abs(r.new-r.old)  
				delta.q<- abs(new.q-old.q)
				counter<- counter+1
				if(counter>patience & max.q!=new.q) max.q<- max(max.q,new.q)
				else if(counter>patience & max.q==new.q ) break
			} #Close interations inside q[j]
			
			adjusted.q[j]<- min(new.q,1)
			adjusted.q[min(j+1,m)]<- adjusted.q[j]
			stopifnot(any(adjusted.q[j]<=checking[j]))
		}#Close looping over j.    
		
		temp.min<- adjusted.q[m]
		for(i in m:1){
			if(adjusted.q[i]<=temp.min) temp.min<- adjusted.q[i]
			else adjusted.q[i]<- temp.min
		}
		return(adjusted.q)      
	}#Close 'else' clause
	
}# Close two.stage.adjust


two.stage<- function(pValues, alpha){
	ranks<- rank(pValues)
	sorted<-sort(pValues)
	m<- length(sorted)
	
	#Stage I- estimating m0
	q1<- alpha/(1+alpha) 
	stage.one<- linearStepUp(sorted, q1, adjust=TRUE, m=m)
	r<- sum(stage.one$Pvals[['rejected']]) #count rejection
	if (r==0) {  #if nothing is rejected, return the results of the linear step up
		stage.one$Pvals[['adjusted.pvals']]<- 1
		return(stage.one)  
	}
	else if (r==m) {
		stage.one$Pvals[['adjusted.pvals']]<- stage.one$Pvals[['adjusted.pvals']][1]
		return(stage.one)  
	}
	
	#Stage II- updating alpha using m0
	else {
		m0<- m-r
		output<- linearStepUp(sorted=sorted,q=q1,m0=m0,m=m)
		output$Pvals[['adjusted.pvals']]<- two.stage.adjust(sorted, alpha, m=m)
		output<-output$Pvals[ranks,]
		output.2<- list(
				criticalValues=output$criticals,
				rejected=output$rejected,
				adjPValues=output$adjusted.pvals,
				errorControl=new(Class='ErrorControl',type="FDR",alpha=alpha),
				pi0= m0/m
		)
		return(output.2)
	}
}

#pvals<- runif(100,0,0.1)
#two.stage(pvals,0.1)

mutoss.two.stage<- function() { return(new(Class="MutossMethod",
					label="B.K.Y. (2006) Two-Stage Step-Up",
					errorControl="FDR",
					callFunction="two.stage",
					output=c("adjPValues", "criticalValues", "rejected", "pi0", "errorControl"),
					assumptions=c("Independent test statistics"),
					info="<h2>Benjamini-Krieger-Yekutieli (2006) Two-Stage Step-Up Procedure</h2>\n\n							
							<p>A p-value procedure which controls the FDR at level <i>&alpha;</i> for independent test statistics, in which case it is more powerful then non adaptive procedures such as the Linear Step-Up (BH). On the other hand, when this is not the case, no error control is guaranteed.
							The linear step-up procedure is used in he first stage to estimate the number of true null hypotheses (mo) which is plugged in a linear step-up
							procedure at the second stage. 
							<h3>Reference:</h3>
							<ul>
							<li>Benjamini, Y., Krieger, A. and Yekutieli, D. \"<i> Adaptive linear step-up procedures that control the false
							discovery rate. </i>\" Biometrika, 93(3):491-507, 2006. </li>\n
							</ul>",
					parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
			)) }

#---------------------Multistage Step-Down-------------------#

multiple.down.adjust<- function(sorted, m){
	adjusted<- rep(NA,m)
	temp.max<- sorted[1]
	max.ind<- rep(0,m)
	
	for (i in 1:m) {
		temp<-  min(sorted[i]*(m+1-i)/(i*(1-sorted[i])),1)
		if  ( temp >= temp.max  ) {
			temp.max <- temp
			max.ind[i] <- 1
		}
		adjusted[i]<- temp.max
	}
	
	return(adjusted)
}





multiple.down=function(pValues, alpha){
	sorted<- sort(pValues)
	ranks<- rank(pValues)
	m<- length(pValues)
	
	if(alpha>0.5) warning('FDR is not controlled when q>0.5')
	
	criticals<- sapply(1:m,function(i) alpha*i/(m-i*(1-alpha)+1))
	indicators<-  sorted<criticals # Marking p-values below the critical values
	
	if(!indicators[1]) cutoff<-list(cutoff=0,cut.index=0)
	else if(all(indicators)) cutoff<- list(cutoff=sorted[m],cut.index=m)
	else{ 
		cut.index<- min((1:m)[!indicators])-1
		cutoff<- list(cutoff=sorted[cut.index],cut.index=cut.index) 
	}
	
	rejected<-  sorted<=cutoff$cutoff
	
	adjusted<-multiple.down.adjust(sorted,m)  
	
	output<- data.frame(
			criticals=criticals,
			rejected=rejected,
			adjusted.pvals=adjusted)
	output<- output[ranks,]
	output.2<-list(
			criticalValues=output$criticals,
			rejected=output$rejected,
			adjPValues=output$adjusted.pvals,
			errorControl=new(Class='ErrorControl',type="FDR",alpha=alpha)
	)
	return(output.2)	
}

mutoss.multiple.down <- function() { return(new(Class="MutossMethod",
					label="B.K.Y. (2006) Multi-Stage Step-down",
					errorControl="FDR",
					callFunction="multiple.down",
					output=c("adjPValues", "criticalValues", "rejected", "errorControl"),
					assumptions=c("Independent test statistics"),
					info="<h2>Benjamini-Krieger-Yekutieli (2006) multi-stage step-down procedure</h2>\n\n\
							<p>A non-linear step-down p-value procedure which control the FDR for independent test statistics and enjoys more power then other non-adaptive procedure such as the linear step-up (BH).
							For the case of non-independent test statistics, non-adaptive procedures such as the linear step-up (BH) or the all-purpose conservative Benjamini-Yekutieli (2001) are recommended.</p>\n
							<h3>Reference:</h3>
							<ul>
							<li>Benjamini, Y., Krieger, A. and Yekutieli, D. \"<i> Adaptive linear step-up procedures that control the false
							discovery rate. </i>\" Biometrika, 93(3):491-507, 2006. </li>\n
							</ul>",
					parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric"))
			)) }