1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
# Generates a list of lists. Every of these lists, denoted for now
# by L, can be evaluated as a function call by eval(as.call(L))
# listFunAndParameter MUST have the following form:
# list(
# funName = "UnifRandom", # Description/Label of the function to be used
# fun = runif, # A real function, not only the name
# n = 1 # "n" is integer
# )
# Example for the argument:
# Arguments of runif are: n, min, max.
# listFunAndParameter = list(funName="UnifRandomVariable", fun=runif, n=2, min=c(1:2), max=c(1.1, 2.1))
# sapply(generateFunctionStack(listFunAndParameter), function(fc) eval(as.call(fc)))
# is same as
# runif(2, 1, 1.1); runif(2, 2, 1.1); runif(2, 1, 2.1); runif(2, 2, 2.1)
# Of course the second and third call do not make sense.
generateFunctionStack <- function(listFunAndParameter)
{
# special case: the procedure does not need any further parameter
if (length(listFunAndParameter) == 2)
return(list(noParameters=list(fun=listFunAndParameter$fun)))
# listFunAndParameter[[3]] is the first real parameter. The first 2 are the function to
# to be called and a description.
outerPar <- 1:length(listFunAndParameter[[3]])
# Actually I want to build the outerproduct of the parameters,
# but instead of this I use index numbers indicating the position
# of the used parameter. If n=c("a", "b"), n0=c(1:5), alpha=c(0.1, 0.2)
# then 2, 3, 2 stands for n="b", n0=3, alpha=0.2
for(par in listFunAndParameter[-3:-1])
outerPar <- outer(outerPar, 1:length(par), paste)
# special case of only ONE parameter
if (length(listFunAndParameter) == 3)
outerPar <- outer(outerPar, "", paste)
# build now for every parameter constellation
# a list that can be casted into a function call.
fcStack <- list()
for (parIDX in outerPar)
{
idx <- as.numeric(unlist(strsplit(parIDX, " ")))
parameter <- list()
for(i in 1:length(listFunAndParameter[-2:-1]))
# listFunAndParameter[-2:-1][[i]] is the i-th parameter in the list.
# from the 1st parameter we want the idx[1]-th entry from the 2nd parameter
# we want the idx[2]-th entry and so on.
parameter <- c(parameter, listFunAndParameter[-2:-1][[i]][idx[i]])
stackPosName <- paste(listFunAndParameter$funName, parIDX)
fcStack[[stackPosName]] <- c(listFunAndParameter$fun, parameter)
names(fcStack[[stackPosName]]) <- names(listFunAndParameter[-1])
}
return(fcStack)
}
gatherParameters <- function(simObject)
{
#+++++++++++++++++++ Subfunctions +++++++++++++++++++++++
# extract from resultVecotr ( = simObject$results ) all values of the
# parameter with the name paraName.
getParamWithName <- function(resultVector, paraName)
{
unlist(
lapply(resultVector,
function(mts)
{
val <- mts$parameters[[paraName]]
if (is.null(val))
return("")
val
}
)
)
}
#------------------- Subfunctions -----------------------
# gathering all parameters used in the simObject$results
parNames <- unique(unlist(lapply(simObject$results, function(obj) names(obj$parameters))))
return(data.frame(sapply(parNames, function(pN) getParamWithName(simObject$results, pN))))
# # calling data.frame(sapply(parNames, function(pN) getParamWithName(simObject$results, pN)))
# # is not good, because numeric parameters can be converted to characters and then to factors
# # and it is possible that the original order is lost. For example the order of c(64, 128)
# # will be 128 < 64.
# ret = data.frame(getParamWithName(simObject$results, parNames[1]))
#
# for (pN in parNames[2:length(parNames)]) # {"funName", "method"} subset of parNames; that is length(parName) >= 2
# ret = data.frame(ret, factor(getParamWithName(simObject$results, pN)))
#
# names(ret) <- parNames
# return(ret)
}
gatherStatistics <- function(simObject, listOfStatisticFunctions, listOfAvgFunctions)
{
#+++++++++++++++++++++++++++ Subfunctions ++++++++++++++++++++++++++
# calculates the intersection of all elements given in aList
listIntersect <- function(aList)
{
nn <- length(aList)
if(nn == 1)
return(aList[[1]])
intersect(aList[[1]], listIntersect(aList[-1]))
}
# actually the whole work is done by this subfunction.
gatherStatisticsOneAvgFun <- function(simObject, listOfStatisticFunctions, avgFun, avgFunName = deparse(substitute(avgFun)))
{
# extract the parameter constellations form the obejct returned by simulation()
paraNameDF <- gatherParameters(simObject)
unqParaNameDF <- unique(paraNameDF)
rownames(unqParaNameDF) <- 1:length(rownames(unqParaNameDF))
# this will be the data.frame containing the parameter constellation and the calculated (averaged) statistics
statDF <- data.frame()
data.set.numbers <- sapply(simObject$results, function(res) res$data.set.number)
for (i in rownames(unqParaNameDF))
{
# search which objects in simObject$results belong to
# parameter configuration in unqParaNameDF[i, ]
idxs <- listIntersect(
lapply(names(paraNameDF),
function(pN) which(unqParaNameDF[i, pN] == paraNameDF[ , pN])
)
)
# applying any given statistic to the objects with the same
# parameter constellation
if (missing(avgFun))
{ # no avgFun, thus the resulting data.frame will have one row for every simObject$results
tmp <- sapply(listOfStatisticFunctions,
function(fun) sapply(idxs, function(idx) fun(simObject$data[[data.set.numbers[idx]]], simObject$results[[idx]]))
)
statDF <- rbind(statDF, cbind(paraNameDF[idxs,], tmp))
}else
{ # avgFun supplied, thus the resulting data.frame will have only one row for
# every parameter constellation
statDF <- rbind(statDF,
sapply(listOfStatisticFunctions,
function(fun) avgFun(sapply(idxs, function(idx)
fun(simObject$data[[data.set.numbers[idx]]],
simObject$results[[idx]])
)
)
)
)
}
}
if (missing(avgFun))
{
# number the rows consecutively
rownames(statDF) <- 1:length(rownames(statDF))
return(
list(
statisticDF = statDF,
name.parameters = names(paraNameDF),
name.statistics = names(listOfStatisticFunctions),
name.avgFun = ""
)
)
}
# label the columns of the resulting data.frame
names(statDF) <- paste(names(listOfStatisticFunctions), avgFunName, sep=".")
statDF <- cbind(unqParaNameDF, statDF)
list(
statisticDF = statDF,
name.parameters = names(paraNameDF),
name.statistics = paste(names(listOfStatisticFunctions), avgFunName, sep="."),
name.avgFun = avgFunName
)
}
#--------------------------- Subfunctions --------------------------
# if no average function is given
# the resulting data.frame will have one row
# for every object in simObject$results
if (missing(listOfAvgFunctions))
return(gatherStatisticsOneAvgFun(simObject, listOfStatisticFunctions))
# the average function is a function, pass this directly to
# gatherStatisticsOneAvgFun
if (is.function(listOfAvgFunctions))
{
return(gatherStatisticsOneAvgFun(
simObject,
listOfStatisticFunctions,
listOfAvgFunctions,
deparse(substitute(listOfAvgFunctions))
)
)
}
# call gatherStatisticsOneAvgFun for every function in
# listOfAvgFunctions
if (length(listOfAvgFunctions) > 0)
{
if (sum(names(listOfAvgFunctions) != "") != length(listOfAvgFunctions))
warning("The functions in listOfAvgFunctions should have a name!")
tmp <- list()
# cnt is needed to determine the name of "fun"
cnt <- 0
for (fun in listOfAvgFunctions)
{
cnt <- cnt + 1
tmp[[cnt]] <- gatherStatisticsOneAvgFun(
simObject,
listOfStatisticFunctions,
fun,
names(listOfAvgFunctions)[cnt]
)
}
# We have gathered many statistics, now join the information
ret <- tmp[[1]]
ret$statisticDF <- ret$statisticDF[ret$name.parameters]
for (i in seq(along.with = listOfAvgFunctions))
{
ret$statisticDF <- cbind(ret$statisticDF, tmp[[i]]$statisticDF[tmp[[i]]$name.statistics])
ret$name.statistics <- c(ret$name.statistics, tmp[[i]]$name.statistics)
ret$name.avgFun <- c(ret$name.avgFun, tmp[[i]]$name.avgFun)
}
ret$name.statistics <- unique(ret$name.statistics)
ret$name.avgFun <- unique(ret$name.avgFun)
return(ret)
}
}
simulation <- function(replications, DataGen, listOfProcedures, discardProcInput=FALSE)
{
paraNameDataGen <- names(DataGen)
if (length(paraNameDataGen) != length(unique(paraNameDataGen)))
{
cat("Parameter of data generating function:\n\t", paraNameDataGen, "\n")
stop("Parameternames of the data generating function are not unique")
}
# check if parameter of the procedures are unique
nameProblems <- FALSE
for( i in seq(along.with = listOfProcedures) )
{
paraNameProc <- names(listOfProcedures[[i]])
if (length(paraNameProc) != length(unique(paraNameProc)))
{
nameProblems <- TRUE
cat("Parameters of procedure", listOfProcedures[[i]]$funName, "are not unique:\n\t", paraNameProc, "\n")
}
}
if (nameProblems) stop("Parameters of some procedures are not unique.\n")
# no intersection between parameters of the data generating function and the
# procedures are allowed.
nameProblems <- FALSE
for( i in seq(along.with = listOfProcedures) )
{
paraNameProc <- names(listOfProcedures[[i]])
equalNames = sort(intersect(paraNameDataGen, paraNameProc))
if (length(equalNames)!= 2 || !all(equalNames == c("fun", "funName")))
{
nameProblems <- TRUE
cat("Common names of the data generating function and multiple test procedure", listOfProcedures[[i]]$funName, "are:\n\t", equalNames, "\n")
}
}
if (nameProblems) stop("The only common name of data generating function and multiple test procedure should be 'fun' and 'funName'.\n")
# TODO: MS print progress of the simulation on the console!
# generating all data generating functions
dataGenStack <- generateFunctionStack(DataGen)
# a bunch of stacks full of procedures
# for example for every method (bonferroni and holm) there
# is a stack for bonferroni with the different parameter configurations
# and a stack for holm with the different parameter configurations
procedureStacks <- lapply(listOfProcedures, function(procs) generateFunctionStack(procs))
names(procedureStacks) <- sapply(listOfProcedures, function(procs) procs$funName)
ret = list()
# cnt is used as an identifier. So every list with
# the same $data.set.number is based on the same generated data
cnt <- 0
for( dataGenCall in dataGenStack )
{
# This is probably the right place for gridComputation
# It calls ONE time
# dataGenCall. Every procedure in procedureStacks is applied
# to this one "dataSet". returns $data and $results
genOneDataSetAndApplyProcedures <- function(dummy)
{
# generating data
data <- eval(as.call(dataGenCall))
# cnt is a global variable that has to be increased
# each time a new "dataSet" is generated.
assign("cnt", get("cnt", envir=sys.frame(-2)) + 1, envir = sys.frame(-2))
# every procedure will be applied to the generated Dataset and the results
# will be stored in the following list
procs.results <- vector("list", sum(sapply(procedureStacks, function(stack) length(stack))))
procs.results.idx <- 0
for (pS in seq(along.with=procedureStacks))
{
# procedureStacks consists of stacks, go through one by one
# this means applying every procedure to the given dataset
procStack <- procedureStacks[[pS]]
for (proc in procStack)
{
procs.results.idx <- procs.results.idx + 1
result <- list()
# every dataset get a unique number
result$data.set.number <- get("cnt", envir = sys.frame(-2))
# saving the parameter constellation of the used data generating function
paramDataGen <- c(DataGen$funName, dataGenCall[-1])
names(paramDataGen)[1] <- "funName"
# saving the parameter constallation of the used procedure
paramProc <- names(procedureStacks)[pS]
# if (length(proc) == 1)
# #proc uses only the parameter from the output of the data generating function
# paramProc <- c(paramProc)#, dummy="")
# else
if(length(proc)>1)
paramProc <- c(paramProc, proc[-1])
names(paramProc)[1] <- "method"
# saving the parameter constallation of the data generating function and the procedure
result$parameters <- c(paramDataGen, paramProc)
# next step is to assign the inputdata for the procedure parameters that was generated by
# the data generating function. But at first I check if this will overwrite
# other parameters already specified for the procedure.
inter <- intersect(names(data$procInput), names(proc))
if (length(inter) != 0)
warning("\n\n\tSome of the parameter of one procedure are already specified,\n\t",
"and the data generating function now provides new values for these",
"parameters :\n\n\t",
"Affected procedure : ", listOfProcedures[[pS]]$funName, "\n\t",
"Affected parameters: ", paste(inter, collapse=" "), "\n")
# assign inputdata generated by the data generating function to the procedure parameters.
for(paraInputName in names(data$procInput))
proc[[paraInputName]] <- data$procInput[[paraInputName]]
# calling the procedure
procOutput <- eval(as.call(proc))
# writing the output of the procedure into the result
for(name in names(procOutput))
result[[name]] <- procOutput[[name]]
# append the new result
procs.results[[procs.results.idx]] <- result
}
}
if (discardProcInput)
data$procInput = NULL
# return the used dataset, the output of the procedure with the used
# parameter constellation
return(list(data=data, results=procs.results))
}
ret <- c(ret, lapply(1:replications, genOneDataSetAndApplyProcedures))
}
# I want to have $data for data and $results for the output of
# the procedures and parameter constellations.
only.results <- sapply(ret, function(obj) obj$results)
dim(only.results) <- NULL
return(
list(data=lapply(ret, function(obj) obj$data),
results=only.results
)
)
}
|