1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
\name{multiple.down}
\alias{multiple.down}
\title{Benjamini-Krieger-Yekutieli (2006) Multi-Stage Step-Down}
\usage{multiple.down(pValues, alpha)}
\description{A p-value procedure which controls the FDR for independent test statistics.}
\details{A non-linear step-down p-value procedure which control the FDR for independent test
statistics and enjoys more power then other non-adaptive procedure such as the linear step-up (BH).
For the case of non-independent test statistics, non-adaptive procedures such as the
linear step-up (BH) or the all-purpose conservative Benjamini-Yekutieli (2001) are recommended.}
\value{A list containing:
\item{rejected}{A logical vector indicating which hypotheses are rejected}
\item{criticalValues}{A numeric vector containing critical values used in the step-up-down test.}
\item{adjPValues}{A numeric vector containing adjusted p-values.}
\item{pi0}{An estimate of the proportion of true null hypotheses among all hypotheses (pi0=m0/m). }
\item{errorControl}{A Mutoss S4 class of type \code{errorControl}, containing the type of error controlled by the function and the level \code{alpha}.}}
\author{Jonathan Rosenblatt}
\arguments{\item{pValues}{A numeric vector of p-values}
\item{alpha}{The FDR error rate to control}}
\examples{pvals<- runif(100)^2
alpha<- 0.2
result<- multiple.down(pvals, alpha)
result
plot(result[['criticalValues']]~pvals)
plot(result[['adjPValues']]~pvals)
abline(v=alpha)}
|