
nanotime: A datetime library with nanosecond
precision
Dirk Eddelbuettel1 and Leonardo Silvestri2

1Department of Statistics, University of Illinois, Urbana-Champaign, IL, USA; 2Baltimore, MD, USA

This version was compiled on July 21, 2020

The nanotime package (Eddelbuettel and Silvestri, 2019) provides a coherent set of temporal types and functions with nanosecond precision. The follow-
ing types are provided: point in time, interval (which may have an open or closed start/end), period (a human representation of time, such as day, month,
etc.), and duration. Of particular interest are set and arithmetic operations defined on these types, as well as the fact that all functionality is designed
to correctly handle instances across different time zones. The new temporal types are based on R built-in types with an efficient implementation, and
are suitable for use in data.frame and data.table objects. nanotime is also a better choice than the native POSIXct in most cases where fractional
seconds are needed as it provides both a finer resolution and additional operations. Note that this vignette should be considered in progress and is not
yet finalized. It should, however, provide some useful information and documentation about the package.

Implementation of the temporal types

All new types provided by the nanotime package are implemented using one or more signed 64-bit integers. As R has no
native 64-bit integer type, nanotime relies on the integer64 type provided by the bit64 package (Oehlschlägel, 2020).
Using an integer-based representation avoid the floating point issues associated with the POSIXct type using in R, and
allows for exact representation of nanosecond-resolution datetimes in the approximative range of years 1386 to 2554,
which is large enough for most applications. It also allows for exact arithmetic and comparison.

Time zones

Time zones are only needed in two cases. The first is representation as of course the same time is represented differently in
different time zones across the globe. The second case is for operations based on calendar time as a year or a day may have
different length depending on its location in time and depending in which time zone it is considered. For example in a time
zone where daylight saving time is observed, there are days of 23 hours and days of 25 hours. Similarly, at historical time
zone offset changes, a year can have a different duration compared to years where no offset change occurred.

To avoid all ambiguity, a time zone is never associated as an attribute with any of the temporal types defined in the
nanotime package. Any operation that requires a time zone in order to be sensible has to explicitly specificy the time zone.

Temporal types

The nanotime package implements four temporal types: time (nanotime), interval (nanoival), duration (nanoduration)
and period (nanoperiod). This set of types seems to have become the consensus for various implementations. It is the set
chosen by Joda Time (Colebourne, 2019), the lubridate package (Grolemund and Wickham, 2011; Spinu et al., 2020)
(without nanosecond resolution), and a similar set (minus the interval type) is chosen by the latest Java Date and Time
implementation (Evans and Warburton, 2014).

nanotime. A nanotime object represents a point in time with nanosecond resolution. It is implemented as an S4 class
containing the type integer64 type from the bit64 package (Oehlschlägel, 2020) to represents the point in time as the
offset in nanoseconds since the “epoch” of 1970-01-01 UTC. A nanotime object not have an associated time zone. It can
be displayed in any desired time zone with the format or print functions—which both accept a time zone argument to
format the point in time in a human-readable format. Finally, it uses the POSIX definition of time, usually referred to as
POSIX time or UNIX time and defined by The Open Group (2016). This representation is suitable for many purposes.

A nanotime object can be constructed either from an integer64 or from a character:

as.nanotime(as.integer64("1580274000000000000"))
[1] 2020-01-29T05:00:00+00:00
as.nanotime("2020-01-29 13:12:00.000000001 America/New_York")
[1] 2020-01-29T18:12:00.000000001+00:00

https://cran.r-project.org/package=nanotime nanotime Vignette | July 21, 2020 | 1–9

https://cran.r-project.org/package=nanotime

as.nanotime("2020-01-29 13:12:00.000000001-05:00")
[1] 2020-01-29T18:12:00.000000001+00:00

For added convenience, short forms are also supported:

as.nanotime("2020-01-29 Europe/London")
[1] 2020-01-29T00:00:00+00:00
as.nanotime("2020-01-29 12:01:01 Africa/Lagos")
[1] 2020-01-29T11:01:01+00:00
as.nanotime("2020-01-29 12:01:01.001 America/Tegucigalpa")
[1] 2020-01-29T18:01:01.001+00:00

nanoival. A nanoival object describes an interval in time defined by two nanotime objects. Here the first one defines the
interval start time, and the second one the end time. Additionally, two logical variables determine if the interval start and
end are open (TRUE) or closed (FALSE), i.e. if the start and end of the interval are excluded (TRUE) or included (FALSE) in
the interval.

A nanoival object can either be constructed with two nanotime and two logical objects, or it can be constructed
from a character string. The string format uses the ‘-’ and ‘+’ signs at the beginning and end to indicate if the interval
start and end are, respectively, open or closed. By default, an interval has a closed start and an open end.

as.nanoival("-2009-01-01 13:12:00 America/New_York -> 2009-02-01 15:11:03 America/New_York+")
[1] -2009-01-01T18:12:00+00:00 -> 2009-02-01T20:11:03+00:00+

start <- nanotime("2009-01-01 13:12:00 America/New_York")
end <- nanotime("2009-02-01 15:11:00 America/New_York")

nanoival(start, end) # by default sopen=F,eopen=T
[1] +2009-01-01T18:12:00+00:00 -> 2009-02-01T20:11:00+00:00-
nanoival(start, end, sopen=FALSE, eopen=TRUE)
[1] +2009-01-01T18:12:00+00:00 -> 2009-02-01T20:11:00+00:00-

Accessors for all four components of a nanoival objects are provided:

ival <- as.nanoival("-2009-01-01 UTC -> 2009-02-01 UTC+")
nanoival.start(ival)
[1] 2009-01-01T00:00:00+00:00
nanoival.end(ival)
[1] 2009-02-01T00:00:00+00:00
nanoival.sopen(ival)
[1] TRUE
nanoival.eopen(ival)
[1] FALSE

nanoduration. A nanoduration object is represented by a simple count of nanoseconds, which may be also be negative.

nanoduration(hours=1, minutes=1, seconds=1, nanoseconds=1)
[1] 01:01:01.000_000_001
as.nanoduration("00:00:01")
[1] 00:00:01
as.nanoduration("-00:00:01")
[1] -00:00:01
as.nanoduration("100:00:00")
[1] 100:00:00
as.nanoduration("00:00:00.000_000_001")
[1] 00:00:00.000_000_001

2 | https://cran.r-project.org/package=nanotime Eddelbuettel, Silvestri

https://cran.r-project.org/package=nanotime

nanoperiod. A nanoperiod object represents the calendar or “business” view of a duration with the concepts of month and
day. The exact duration of a period is unknown until it is anchored to a point in time and associated with a time zone. This
is due to two reasons: first because a month has variable length, and secondly because it might span a daylight saving time
change.

Each nanoperiod object is composed of two parts: a months and days part, and a duration. Note that these components
may have opposite signs.

For convenience, the constructor syntax allows specifying years and weeks, but they are converted to their representation
in months and days.

as.nanoperiod("1y1m1w1d/01:01:01.000_000_001")
[1] 13m8d/01:01:01.000_000_001
nanoperiod(months=13, days=-1, duration="01:00:00")
[1] 13m-1d/01:00:00

Accessors for nanoperiod components are provided:

ones <- as.nanoperiod("1y1m1w1d/01:01:01.000_000_001")
nanoperiod.month(ones)
[1] 13
nanoperiod.day(ones)
[1] 8
nanoperiod.nanoduration(ones)
[1] 01:01:01.000_000_001

Set operations

The set operations intersect, union and setdiff are provided and offer a more rigorous handling of temporal interval
types. Additionally, intersect and setdiff have counterpart functions intersect.idx and setdiff.idx that, instead
of computing a new set, return the index of the set. Finally, the operator %in% is overloaded so as to provide a convenient
intersection shorthand particularly suitable for the subsetting of time-series stored as data.table columns.

Here are some examples:

ni1 <- c(as.nanoival("+2013-01-01+00:00 -> 2014-01-01+00:00-"),
as.nanoival("+2015-01-01T12:00:01+00:00 -> 2016-01-01+00:00-"),
as.nanoival("+2017-01-01+00:00 -> 2018-01-01+00:00-"))

ni2 <- as.nanoival("-2013-02-02+00:00 -> 2015-06-10+00:00+")
intersect(ni1, ni2)
[1] -2013-02-02T00:00:00+00:00 -> 2014-01-01T00:00:00+00:00-
[2] +2015-01-01T12:00:01+00:00 -> 2015-06-10T00:00:00+00:00+
union(ni1, ni2)
[1] +2013-01-01T00:00:00+00:00 -> 2016-01-01T00:00:00+00:00-
[2] +2017-01-01T00:00:00+00:00 -> 2018-01-01T00:00:00+00:00-
setdiff(ni1, ni2)
[1] +2013-01-01T00:00:00+00:00 -> 2013-02-02T00:00:00+00:00+
[2] -2015-06-10T00:00:00+00:00 -> 2016-01-01T00:00:00+00:00-
[3] +2017-01-01T00:00:00+00:00 -> 2018-01-01T00:00:00+00:00-

Functions and operations

Arithmetic. The standard expected arithmetic operations are defined for various types if and when these operation are
sensible. In particular one can add (or subtract) a period or a duration to and from a nanotime or a nanoival. One
can also multiply and divide period and duration objects by a scalar.

as.nanotime("2020-03-07 01:03:28 America/Los_Angeles") + 999
[1] 2020-03-07T09:03:28.000000999+00:00
as.nanotime("2020-03-07 12:03:28+00:00") + as.nanoduration("24:00:00")
[1] 2020-03-08T12:03:28+00:00

Eddelbuettel, Silvestri nanotime Vignette | July 21, 2020 | 3

daylight saving time transition:
plus(as.nanotime("2020-03-07 12:03:28+00:00"), as.nanoperiod("1d"), "America/Los_Angeles")
[1] 2020-03-08T11:03:28+00:00

as.nanoduration("24:00:00")/3
[1] 08:00:00
-as.nanoduration("24:00:00")
[1] -24:00:00

Comparison. Compare operations are mostly straightforward except maybe for nanoival which is ordered by its start
nanotime. If both starts are equal, a closed start comes before an open start. If both sopen are the same, then the
comparison happens on the end of the nanotime, with a shorter interval coming before a longer one. nanoperiod objects
do not have a meaningful ordering and therefore remain unordered.

as.nanoival("+2020-04-03 00:12:00 UTC -> 2020-04-04 00:12:00 UTC-") <
as.nanoival("-2020-04-03 00:12:00 UTC -> 2020-04-04 00:12:00 UTC-")

[1] TRUE
nanotime(1) <= nanotime(2)
[1] TRUE
as.nanoduration(1) > as.nanoduration(2)
[1] FALSE
attr(,".S3Class")
[1] "integer64"

Sequence Generation. Sequence generation is provided for nanotime and nanoival objects. The increment can either be
a nanoduration or a nanoperiod. Since a period is sensitive to the time zone in which the operation takes place, the
additional tz argument must be provided to seq when operating on nanoperiod objects as in the second example.

seq(nanotime("2020-03-28+00:00"), by=as.nanoduration("24:00:00"), length.out=3)
[1] 2020-03-28T00:00:00+00:00 2020-03-29T00:00:00+00:00
[3] 2020-03-30T00:00:00+00:00
seq(nanotime("2020-03-28+00:00"), by=as.nanoperiod("1d"), length.out=3, tz="Europe/London")
[1] 2020-03-28T00:00:00+00:00 2020-03-29T00:00:00+00:00
[3] 2020-03-29T23:00:00+00:00

ival <- as.nanoival("+2020-03-28T13:00:00+00:00 -> 2020-03-28T15:00:00+00:00-")
print(seq(ival, by=as.nanoperiod("1m"), length.out=3, tz="Europe/London"), tz="Europe/London")
[1] +2020-03-28T13:00:00+00:00 -> 2020-03-28T15:00:00+00:00-
[2] +2020-04-28T13:00:00+01:00 -> 2020-04-28T15:00:00+01:00-
[3] +2020-05-28T13:00:00+01:00 -> 2020-05-28T15:00:00+01:00-

Note that nanoperiod is correct with respect to time zone calculations, even on the rare hourly events where a transition
occurs from a time zone offset with an hourly difference to a time zone offset with a half-hourly difference.

print(seq(as.nanotime("2006-04-14 22:00:00 Asia/Colombo"),
by=as.nanoperiod("01:00:00"),
length.out=4,
tz="Asia/Colombo"),

tz="Asia/Colombo")
[1] 2006-04-14T22:00:00+06:00 2006-04-14T23:00:00+06:00
[3] 2006-04-15T00:00:00+06:00 2006-04-15T01:00:00+05:30

Year, Month and Day. Utilities are provided for obtaining in numerical format the day of the week (nano_wday), the day of
the month (nano_mday), the month (nano_month) and the year (nano_year) from a given nanotime. Remember that a
time zone is never stored with a nanotime and therefore, to have meaning, all the functions take as second argument the

4 | https://cran.r-project.org/package=nanotime Eddelbuettel, Silvestri

https://cran.r-project.org/package=nanotime

time zone required for this computation. Note that the convention for the day of the week is a count from 0 to 6, with 0
falling on Sunday.

tm <- as.nanotime("2019-12-31 20:00:00", tz="UTC")
nano_wday(tm, "Australia/Melbourne")
[1] 3
nano_wday(tm, "America/New_York")
[1] 2
nano_mday(tm, "Africa/Nairobi")
[1] 31
nano_month(tm, "Indian/Reunion")
[1] 1
nano_year(tm, "Asia/Irkutsk")
[1] 2020

Rounding Operations. The functions nano_floor and nano_ceiling are provided in order to perform rounding to an
arbitrary precision. An origin argument of type nanotime can be optionally specified to offer full control over the reference
chosen for the rounding.

These functions are also to be understood in the context of vectors of nanotime objects where the precision defines a
grid interval. These functions will pick a reasonable reference for the alignment. In particular, when using a nanoperiod,
the functions will check if a precision is a multiple of a larger unit. If so, the rounding will happen with the larger unit as
origin. For instance, if the precision is 6 hours—a multiple of a day—the rounding will be performed in such a way as to
align the vector within a day, i.e. the rounding will be done at hours 0, 6, 12 and 18. On the other hand, if the origin is
explicitly specified, then it is this value that will be taken as starting point for the rounding. For instance, if the origin is set
to 2020-04-27 23:57:04 then the rounding will be done at 23:57:04, 05:57:04, 11:57:04 and 17:57:04.

nano_floor(as.nanotime("2020-04-27 23:57:04.123456678 UTC"),
as.nanoduration("00:00:00.001"))

[1] 2020-04-27T23:57:04.123+00:00
nano_ceiling(as.nanotime("2020-04-27 23:57:04.123456678 UTC"),

as.nanoduration("00:00:00.001"))
[1] 2020-04-27T23:57:04.124+00:00

nano_floor(as.nanotime("2020-04-27 23:57:04 UTC"), as.nanoperiod("06:00:00"), tz="UTC")
[1] 2020-04-27T18:00:00+00:00
nano_ceiling(as.nanotime("2020-04-27 23:57:04 UTC"), as.nanoperiod("06:00:00"), tz="UTC")
[1] 2020-04-28T00:00:00+00:00

nano_floor(as.nanotime("2020-04-27 23:57:04 America/New_York"),
as.nanoperiod("1m"), tz="America/New_York")

[1] 2020-04-01T04:00:00+00:00
nano_ceiling(as.nanotime("2020-04-27 23:57:04 America/New_York"),

as.nanoperiod("1m"), tz="America/New_York")
[1] 2020-05-01T04:00:00+00:00

Use with data.frame and data.table

All the new types introduced by the nanotime package are compatible with data.frame and data.table (Dowle and
Srinivasan, 2019) objects. By having an ordered nanotime column it is thus easy to define a time-series. One can then use
nanoival subsetting.

idx <- seq(nanotime("2020-04-02+00:00"), by=as.nanoperiod("1d"), length.out=20, tz="UTC")
dt <- data.table(idx, v1=1:20, v2=c(TRUE, FALSE))
ival <- as.nanoival(c("+2020-04-05 UTC -> 2020-04-07 UTC+",

"+2020-04-15 UTC -> 2020-04-17 UTC+"))

Eddelbuettel, Silvestri nanotime Vignette | July 21, 2020 | 5

dt[idx %in% ival]
idx v1 v2
1: 2020-04-05T00:00:00+00:00 4 FALSE
2: 2020-04-06T00:00:00+00:00 5 TRUE
3: 2020-04-07T00:00:00+00:00 6 FALSE
4: 2020-04-15T00:00:00+00:00 14 FALSE
5: 2020-04-16T00:00:00+00:00 15 TRUE
6: 2020-04-17T00:00:00+00:00 16 FALSE

Use of the rounding functions makes it possible to perform aggregations on data.table instances utilising its powerful
‘group-by’ operator by:

idx <- seq(as.nanotime("2020-03-08 UTC"), as.nanotime("2020-03-10 UTC"),
by=as.nanoduration("00:01:00"))

dt <- data.table(idx, a=1:length(idx))
dt[, .(mean=mean(a)), by=nano_ceiling(idx, as.nanoduration("06:00:00"))]
[1] "subset numeric"
nano_ceiling mean
1: 2020-03-08T00:00:00+00:00 1.0
2: 2020-03-08T06:00:00+00:00 181.5
3: 2020-03-08T12:00:00+00:00 541.5
4: 2020-03-08T18:00:00+00:00 901.5
5: 2020-03-09T00:00:00+00:00 1261.5
6: 2020-03-09T06:00:00+00:00 1621.5
7: 2020-03-09T12:00:00+00:00 1981.5
8: 2020-03-09T18:00:00+00:00 2341.5
9: 2020-03-10T00:00:00+00:00 2701.5

Input and Output Format

nanotime. The input and output format default to “%Y-%m-%dT%H:%M:%EXS%Ez” where the ‘X’ specifies a variable
number of digits for the nanosecond portion. When no overriding format is defined, the output will include only the
relevant nanotime precision for the vector without right-padded zeros as shown in the following example:

format(as.nanotime("2020-12-12T00:00:00.000000000+00:00"))
[1] "2020-12-12T00:00:00+00:00"
format(as.nanotime("2020-12-12T00:00:00.123000000+00:00"))
[1] "2020-12-12T00:00:00.123+00:00"
format(as.nanotime("2020-12-12T00:00:00.123456000+00:00"))
[1] "2020-12-12T00:00:00.123456+00:00"
format(as.nanotime("2020-12-12T00:00:00.123456789+00:00"))
[1] "2020-12-12T00:00:00.123456789+00:00"

Details of the format specification are provided by the documentation for the underlying CCTZ library by White and
Miller (2020) which is deployed here via the RcppCCTZ package (Eddelbuettel, 2020). When no overriding format is
defined, the parsing has some flexibility and the time portion can be omitted. Additionally, the separator '_' can be used
to separate nanosecond groups of 3. So the following examples will parse correctly:

as.nanotime("2020-04-03 UTC")
[1] 2020-04-03T00:00:00+00:00
as.nanotime("2020-04-03T12:23:00 UTC")
[1] 2020-04-03T12:23:00+00:00
as.nanotime("2020-04-03T12:23:00.1 UTC")
[1] 2020-04-03T12:23:00.100+00:00
as.nanotime("2020-04-03T12:23:00.123 UTC")
[1] 2020-04-03T12:23:00.123+00:00
as.nanotime("2020-04-03T12:23:00.123356789 UTC")

6 | https://cran.r-project.org/package=nanotime Eddelbuettel, Silvestri

https://cran.r-project.org/package=nanotime

[1] 2020-04-03T12:23:00.123356789+00:00
as.nanotime("2020-04-03T12:23:00.123_356_789 UTC")
[1] 2020-04-03T12:23:00.123356789+00:00

Date separators can be ' ', '-' and '/' whereas the separator between date and time can be 'T’ or ' ':

as.nanotime("2020 04 03 UTC")
[1] 2020-04-03T00:00:00+00:00
as.nanotime("2020/04/03 UTC")
[1] 2020-04-03T00:00:00+00:00
as.nanotime("2020-04-03T12:23:00 UTC")
[1] 2020-04-03T12:23:00+00:00

nanoival. The output format for nanoival objects is based on nanotime as a nanoival object is composed of both a
nanotime start and end object as well as two booleans that indicate if the boundaries of the interval are open or closed.
This open and closed is indicated by prefixing and postfixing with the the characters '-' and '+'. The start and end are
separated by '->'. Two examples follow.

as.nanoival("+2020-12-12 UTC -> 2020-12-13 UTC-")
[1] +2020-12-12T00:00:00+00:00 -> 2020-12-13T00:00:00+00:00-
as.nanoival("-2020-12-12T00:00:01.123 America/New_York -> 2020-12-14+00:00+")
[1] -2020-12-12T05:00:01.123+00:00 -> 2020-12-14T00:00:00+00:00+

nanoduration. The output format for a nanoduration object is immutable, and identical to the hour/minute/second/nanosecond
portion of a nanotime object:

as.nanoduration("12:23:00")
[1] 12:23:00
as.nanoduration("12:23:00.1")
[1] 12:23:00.100
as.nanoduration("12:23:00.123")
[1] 12:23:00.123
as.nanoduration("12:23:00.123356789")
[1] 12:23:00.123_356_789
as.nanoduration("12:23:00.123_356_789")
[1] 12:23:00.123_356_789

nanoperiod. The output format for nanoperiod is also immutable. It is composed of two parts. First comes a month and
day part, which is followed by a nanoduration part that is separated by '/'. In input, years, months, weeks and days are
specified with a signed integer following, respectively by the letters 'y','m','w','d'. The nanoduration that composes
the second part is specified like for a standalone nanoduration. Each of these two parts is optional. In output, only months
and days are specified as years can be expressed as 12 months and weeks as 7 days. Here are some examples:

as.nanoperiod("1y1m1w1d/00:00:00.123")
[1] 13m8d/00:00:00.123
as.nanoperiod("-2y")
[1] -24m0d/00:00:00
as.nanoperiod("00:00:00.123")
[1] 0m0d/00:00:00.123

Technical Details

All new types provided in this package are built with S4 classes containing an R primitive type that is then reinterpreted.
nanotime and duration are (indirectly) based on double via the type integer64 from the bit64 package written by
Oehlschlägel (2020), whereas nanoival and period are based on complex, which allows the storage of 128 bits. Time-zone

Eddelbuettel, Silvestri nanotime Vignette | July 21, 2020 | 7

Table 1. Comparison of as.nanotime, base R and fasttime

test replications elapsed relative

as.nanotime 10000 0.304 2.895
as.nanotime_with_format 10000 0.377 3.590
as.nanotime_with_tz 10000 0.397 3.781
as.POSIXct 10000 1.698 16.171
fastPOSIXct 10000 0.105 1.000

conversion and calculation as well general time operations rely on the CCTZ library (White and Miller, 2020) interfaced by
RcppCCTZ (Eddelbuettel, 2020). Interfacing to and from C++ is done using the Rcpp package (Eddelbuettel and François,
2011; Eddelbuettel et al., 2020).

Performance

The as.POSIXct function in R provides a useful baseline as it is also implemented in compiled code. The fastPOSIXct
function from the fasttime package (Urbanek, 2016) excels at converting one (and only one) input format fast to a
(UTC-only) datetime object. A simple benchmark converting 100 input strings 10,000 times shows that the nanotime
constructor is much closer to the performance of the optimal fastPOSIXct parser than to the more general as.POSIXct
converter, see Table 1 for details.

Summary

We describe the nanotime package which offers a coherent set of types and operations with nanosecond precision.
We show that the nanotime package provides the building blocks to build more complicated and interesting functions,

in particular within the context of data.table time-series.

Appendix

The benchmark results shown in table 1 are based on the code included below, and obtained via execution under R version
4.0.2 running under Ubuntu 20.04 with Linux kernel 5.4.0-39 on an Intel i7-8700K CPU.

library(nanotime)
library(rbenchmark)
library(fasttime)

x_posixct <- rep("2020-03-19 22:55:23", 100)
x_nanotime <- rep("2020-03-19 22:55:23.000000001+00:00", 100)
x_nanotime_tz <- rep("2020-03-19 22:55:23.000000001 America/New_York", 100)
x_nanotime_cctz <- rep("03-19-2020 22:55:23.000000001+00:00", 100)

benchmark(
"as.POSIXct" = { x <- as.POSIXct(x_posixct) },
"fastPOSIXct" = { x <- fastPOSIXct(x_posixct) },
"as.nanotime" = { x <- as.nanotime(x_nanotime) },
"as.nanotime with tz" = { x <- as.nanotime(x_nanotime_tz) },
"as.nanotime with format" = { x <- as.nanotime(x_nanotime_tz, format="%m-%d-%YT%H:%M:%E9S%Ez") },
replications = 10000,
columns = c("test", "replications", "elapsed", "relative"))

References
Colebourne S (2019). Joda-Time. URL https://www.joda.org/joda-time/.
Dowle M, Srinivasan A (2019). data.table: Extension of ‘data.frame‘. R package version 1.12.8, URL https://CRAN.R-project.org/package=data.table.
Eddelbuettel D (2020). RcppCCTZ: ’Rcpp’ Bindings for the ’CCTZ’ Library. R package version 0.2.7, URL https://CRAN.R-project.org/package=RcppCCTZ.
Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

8 | https://cran.r-project.org/package=nanotime Eddelbuettel, Silvestri

https://www.joda.org/joda-time/
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=RcppCCTZ
http://www.jstatsoft.org/v40/i08/
https://cran.r-project.org/package=nanotime

Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Bates D, Chambers J (2020). Rcpp: Seamless R and C++ Integration. R package version 1.0.5,
URL https://CRAN.R-project.org/CRAN=package=Rcpp.

Eddelbuettel D, Silvestri L (2019). nanotime: Nanosecond-Resolution Time for R. R package version 0.2.4, URL https://CRAN.R-project.org/package=nanotime.
Evans B, Warburton R (2014). “Java SE 8 Date and Time.” URL http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html.
Grolemund G, Wickham H (2011). “Dates and Times Made Easy with lubridate.” Journal of Statistical Software, 40(3), 1–25. URL http://www.jstatsoft.org/v40/i03/.
Oehlschlägel J (2020). bit64: A S3 Class for Vectors of 64bit Integers. R package version 0.9-7.1, URL https://CRAN.R-project.org/package=bit64.
Spinu V, Grolemund G, Wickham H (2020). lubridate: Make Dealing with Dates a Little Easier. R package version 1.7.9, URL https://CRAN.R-project.org/package=

lubridate.
The Open Group (2016). “The Open Group Base Specifications Issue 7, Rationale, section 4.16 Seconds Since the Epoch.” Technical Report Std 1003.1-2008. URL

http://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html#tag_21_04_16.
Urbanek S (2016). fasttime: Fast Utility Function for Time Parsing and Conversion. R package version 1.0.2, URL https://CRAN.R-project.org/package=fasttime.
White B, Miller G (2020). C++ library for translating between absolute and civil times using the rules of a time zone.Joda-Time. URL https://github.com/google/cctz/.

Eddelbuettel, Silvestri nanotime Vignette | July 21, 2020 | 9

https://CRAN.R-project.org/CRAN=package=Rcpp
https://CRAN.R-project.org/package=nanotime
http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html
http://www.jstatsoft.org/v40/i03/
https://CRAN.R-project.org/package=bit64
https://CRAN.R-project.org/package=lubridate
https://CRAN.R-project.org/package=lubridate
http://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html#tag_21_04_16
https://CRAN.R-project.org/package=fasttime
https://github.com/google/cctz/

	Implementation of the temporal types
	Time zones
	Temporal types
	nanotime
	nanoival
	nanoduration
	nanoperiod
	Set operations
	Functions and operations
	Arithmetic
	Comparison
	Sequence Generation
	Year, Month and Day
	Rounding Operations
	Use with data.frame and data.table
	Input and Output Format
	nanotime
	nanoival
	nanoduration
	nanoperiod

	Technical Details
	Performance
	Summary

	Appendix

