1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
|
######################################################################
#
# coercion.R
#
# Written by Carter T. Butts <buttsc@uci.edu>; portions contributed by
# David Hunter <dhunter@stat.psu.edu> and Mark S. Handcock
# <handcock@u.washington.edu>.
#
# Last Modified 06/08/21
# Licensed under the GNU General Public License version 2 (June, 1991)
# or greater
#
# Part of the R/network package
#
# This file contains various routines for coercion to/from network
# class objects.
#
# Contents:
#
# as.matrix.network
# as.matrix.network.adjacency
# as.matrix.network.edgelist
# as.matrix.network.incidence
# as.network
# as.network.default
# as.network.network
# as.network.matrix
# as.sociomatrix
#
######################################################################
# Method for general coercion of network class objects into matrices.
# Matrix type is indicated by the eponymous argument; note that some
# types may not be supported for certain networks. Where
# attrname!=NULL, an edge attribute of name attrname is used to supply
# edge values. Otherwise, edges are assumed to be unvalued.
#
#' Coerce a Network Object to Matrix or Table Form
#'
#' The \code{as.matrix} methods attempt to coerce their input to a matrix in
#' adjacency, incidence, or edgelist form. Edge values (from a stored
#' attribute) may be used if present. \code{\link[tibble:as_tibble]{as_tibble}}
#' coerces into an edgelist in \code{\link[tibble]{tibble}} (a type of
#' \code{\link{data.frame}}) form; this can be especially useful if extrecting
#' a character-type edge attribute.
#'
#' If no matrix type is specified, \code{\link{which.matrix.type}} will be used
#' to make an educated guess based on the shape of \code{x}. Where edge values
#' are not specified, a dichotomous matrix will be assumed.
#'
#' Edgelists returned by the \code{as.matrix} methods are by default in a
#' slightly different form from the \code{sna} edgelist standard, but do
#' contain the \code{sna} extended matrix attributes (see
#' \code{\link{as.network.matrix}}). They should typically be compatible with
#' \code{sna} library functions. To ensure compatibility, the
#' \code{as.sna.edgelist} argument can be set (which returns an exact
#' \code{sna} edgelist). The \code{\link{as.edgelist}} function also returns a
#' similar edgelist matrix but with an enforced sorting.
#'
#' For the \code{as.matrix} methods, if the \code{attrname} attribute is used
#' to include a charcter attribute, the resulting edgelist matrix will be
#' character rather than numeric. The \code{as_tibble} methods never coerce.
#'
#' Note that adjacency matrices may also be obtained using the extraction
#' operator. See the relevant man page for details. Also note that which
#' attributes get returned by the \code{as_tibble} method by default depends on
#' \code{unit}: by default no edge attributes are returned but all vertex
#' attributes are.
#'
#' @param x an object of class \code{network}
#' @param matrix.type one of \code{"adjacency"}, \code{"incidence"},
#' \code{"edgelist"}, or \code{NULL}
#' @param attrname optionally, the name of an edge attribute to use for edge
#' values
#' @param attrnames optionally, either a character vector of the names of edge
#' attributes to use for edge values, or a numerical or logical vector to use
#' as indices for selecting them from \code{\link{list.edge.attributes}(x)} or
#' \code{\link{list.vertex.attributes}(x)} (depending on \code{unit}); passing
#' \code{TRUE} therefore returns all edge attributes as columns
#' @param expand.bipartite logical; if \code{x} is bipartite, should we return
#' the full adjacency matrix (rather than the abbreviated, two-mode form)?
#' @param as.sna.edgelist logical; should the edgelist be returned in sna
#' edglist form?
#' @param na.rm logical; should missing edges/vertices be included in the
#' edgelist formats? Ignored if \code{as.sna.edgelist=TRUE}.
#' @param unit whether a \code{\link[tibble]{tibble}} of edge or vertex attributes
#' should be returned.
#' @param ... additional arguments.
#' @return For \code{as.matrix} methods, an adjacency, incidence, or edgelist
#' matrix. For the \code{as_tibble} method, a \code{tibble} whose first two
#' columns are \code{.head} and \code{.tail}, whose third column \code{.eid} is
#' the edge ID, and whose subsequent columns are the requested edge attributes.
#' @author Carter T. Butts \email{buttsc@@uci.edu} and David Hunter
#' \email{dhunter@@stat.psu.edu}
#' @seealso \code{\link{which.matrix.type}}, \code{\link{network}},
#' \code{\link{network.extraction}},\code{\link{as.edgelist}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords classes graphs
#' @examples
#'
#' # Create a random network
#' m <- matrix(rbinom(25,4,0.159),5,5) # 50% density
#' diag(m) <- 0
#' g <- network(m, ignore.eval=FALSE, names.eval="a") # With values
#' g %e% "ac" <- letters[g %e% "a"]
#'
#' # Coerce to matrix form
#' # No attributes:
#' as.matrix(g,matrix.type="adjacency")
#' as.matrix(g,matrix.type="incidence")
#' as.matrix(g,matrix.type="edgelist")
#' # Attributes:
#' as.matrix(g,matrix.type="adjacency",attrname="a")
#' as.matrix(g,matrix.type="incidence",attrname="a")
#' as.matrix(g,matrix.type="edgelist",attrname="a")
#' as.matrix(g,matrix.type="edgelist",attrname="ac")
#'
#' # Coerce to a tibble:
#' library(tibble)
#' as_tibble(g)
#' as_tibble(g, attrnames=c("a","ac"))
#' as_tibble(g, attrnames=TRUE)
#' # Get vertex attributes instead:
#' as_tibble(g, unit = "vertices")
#'
#' # Missing data handling:
#' g[1,2] <- NA
#' as.matrix(g,matrix.type="adjacency") # NA in the corresponding cell
#' as.matrix(g,matrix.type="edgelist", na.rm=TRUE) # (1,2) excluded
#' as.matrix(g,matrix.type="edgelist", na.rm=FALSE) # (1,2) included
#' as_tibble(g, attrnames="na", na.rm=FALSE) # Which edges are marked missing?
#'
#' # Can also use the extraction operator
#' g[,] # Get entire adjacency matrix
#' g[1:2,3:5] # Obtain a submatrix
#'
#' @export as.matrix.network
#' @export
as.matrix.network<-function(x,matrix.type=NULL,attrname=NULL,...){
#Get the matrix type
if(is.null(matrix.type))
matrix.type<-"adjacency"
else
matrix.type<-match.arg(matrix.type,c("adjacency","incidence","edgelist"))
#Dispatch as needed
switch(matrix.type,
adjacency=as.matrix.network.adjacency(x=x,attrname=attrname,...),
incidence=as.matrix.network.incidence(x=x,attrname=attrname,...),
edgelist=as.matrix.network.edgelist(x=x,attrname=attrname,...)
)
}
# Coerce a network object to an adjacency matrix (where possible). If
# provided, attrname is used to identify an attribute to use for edge
# values.
#
#' @rdname as.matrix.network
#' @usage \method{as.matrix.network}{adjacency}(x, attrname=NULL,
#' expand.bipartite = FALSE, ...)
#' @export as.matrix.network.adjacency
#' @rawNamespace S3method(as.matrix.network,adjacency)
as.matrix.network.adjacency<-function(x,attrname=NULL,expand.bipartite=FALSE,...){
#Check to make sure this is a supported network type
if(is.hyper(x))
stop("Hypergraphs not currently supported in as.matrix.network.adjacency. Exiting.\n")
if(is.multiplex(x))
stop("Multigraphs not currently supported in as.matrix.network.adjacency. Exiting.\n")
#Generate the adjacency matrix
m<-matrix(0,nrow=network.size(x),ncol=network.size(x))
if(network.size(x)==0)
return(m)
tl<-unlist(sapply(x$mel,"[[","outl")) #Can unlist b/c no hyperedges
hl<-unlist(sapply(x$mel,"[[","inl"))
nal<-as.logical(get.edge.attribute(x$mel,"na",unlist=TRUE))
if(!is.null(attrname)){
val<-unlist(get.edge.attribute(x$mel,attrname,unlist=FALSE))
if(is.null(val)){
warning(paste("There is no edge attribute named", attrname))
val<-rep(1,length(tl))
}
}else{
val<-rep(1,length(tl))
}
if(length(hl[!nal])>0){
m[tl[!nal]+(hl[!nal]-1)*network.size(x)]<-val[!nal]
}
if(length(hl[ nal])>0){
m[tl[ nal]+(hl[ nal]-1)*network.size(x)]<-NA
}
#If undirected, symmetrize
if(!is.directed(x)){
# changed by MSH to allow non binary values
# m<-pmax(m,t(m))
sel<-m
sel[is.na(m)]<-1
m[sel==0] <- t(m)[sel==0]
}
#Set row/colnames to vertex names
xnames <- network.vertex.names(x)
dimnames(m) <- list(xnames, xnames)
#If bipartite and !expand.bipartite, return in two-mode form
if(is.bipartite(x)&(!expand.bipartite)){
nactors <- get.network.attribute(x, "bipartite")
nevents <- network.size(x) - nactors
m <- m[1:nactors, nactors+(1:nevents), drop=FALSE]
}
#Return the result
m
}
# Coerce a network object to an edgelist matrix. If provided, attrname is
# used to identify an attribute to use for edge values. Setting as.sna.edgelist
# results in output in the sna edgelist format (including missing edge handling)
# and is used by the sna package for coercion.
#
#' @rdname as.matrix.network
#' @usage \method{as.matrix.network}{edgelist}(x, attrname=NULL,
#' as.sna.edgelist = FALSE, na.rm = TRUE, ...)
#' @export as.matrix.network.edgelist
#' @rawNamespace S3method(as.matrix.network,edgelist)
as.matrix.network.edgelist<-function(x,attrname=NULL,as.sna.edgelist=FALSE,na.rm=TRUE,...){
#Check to make sure this is a supported network type
if(is.hyper(x))
stop("Hypergraphs not currently supported in as.matrix.network.edgelist. Exiting.\n")
#Find the missing edges
nal<-as.logical(get.edge.attribute(x$mel,"na"))
#Generate the edgelist matrix
m<-cbind(unlist(sapply(x$mel,"[[","outl")), unlist(sapply(x$mel,"[[","inl")))
#Add edge values, if needed
if(!is.null(attrname))
m<-cbind(m,get.edge.attribute(x$mel,attrname,na.omit=FALSE,null.na=TRUE,deleted.edges.omit=TRUE))
else if(as.sna.edgelist)
m<-cbind(m,rep(1,NROW(m)))
#Set additional attributes and return the result
if(as.sna.edgelist && nrow(m) > 0) # check that there are actually edges
m[nal,3]<-NA
else if(na.rm) m<-m[!nal,,drop=FALSE]
if(length(m)==0)
m<-matrix(numeric(0),ncol=2+as.sna.edgelist+!is.null(attrname))
else if((!is.directed(x))&&as.sna.edgelist){ #sna uses directed form
m<-rbind(m,m[m[,2]!=m[,1],c(2:1,3)])
}
attr(m,"n")<-network.size(x)
attr(m,"vnames")<-network.vertex.names(x)
if(is.bipartite(x))
attr(m,"bipartite")<-x%n%"bipartite"
m
}
# Coerce a network object to an edgelist tibble. If provided, attrnames is
# used to identify a list of attributes to use for edge values.
#
#' @rdname as.matrix.network
#' @param store.eid whether the edge ID should be stored in the third column (`.eid`).
#' @export
as_tibble.network<-function(x,attrnames=(match.arg(unit)=="vertices"),na.rm=TRUE,..., unit=c("edges", "vertices"), store.eid=FALSE){
df <- as.data.frame(x, unit = unit, store_eid = store.eid, na.rm = na.rm, attrs_to_ignore = c(), name_vertices = FALSE, sort_attrs=TRUE, ...)
unit <- match.arg(unit)
if(is.logical(attrnames) || is.numeric(attrnames))
attrnames <- na.omit(setdiff(names(df), c(".tail", ".head", ".eid"))[attrnames])
# Keep only requested columns, but make sure all named columns are present.
df <- df[intersect(c(".tail", ".head", ".eid", attrnames), names(df))]
for(a in setdiff(attrnames, names(df))) df[[a]] <- rep(list(), nrow(df))
structure(as_tibble(df),
n = network.size(x),
vnames = network.vertex.names(x),
bipartite = x %n% "bipartite")
}
#' @rdname as.matrix.network
#' @rawNamespace S3method(as.tibble,network)
as.tibble.network <- as_tibble.network
# Coerce a network object to an incidence matrix (where possible). If
# provided, attrname is used to identify an attribute to use for edge
# values.
#
#' @rdname as.matrix.network
#' @usage \method{as.matrix.network}{incidence}(x, attrname=NULL, ...)
#' @export as.matrix.network.incidence
#' @rawNamespace S3method(as.matrix.network,incidence)
as.matrix.network.incidence<-function(x,attrname=NULL,...){
#Perform preprocessing
n<-network.size(x)
nulledge<-sapply(x$mel,is.null)
inl<-lapply(x$mel,"[[","inl")[!nulledge]
outl<-lapply(x$mel,"[[","outl")[!nulledge]
if(!is.null(attrname))
evals<-unlist(get.edge.attribute(x$mel,attrname))[!nulledge]
else
evals<-rep(1,length(x$mel))[!nulledge]
ena<-as.logical(get.edge.attribute(x$mel,"na"))[!nulledge]
#If called with an empty graph, return a degenerate matrix
if(length(ena)==0)
return(matrix(numeric(0),nrow=n))
#Generate the incidence matrix
dir<-is.directed(x)
f<-function(a,m,k){y<-rep(0,m); y[a]<-k; y}
im<-sapply(inl,f,n,1)+sapply(outl,f,n,ifelse(dir,-1,1))
if(!dir)
im<-pmin(im,1)
im<-sweep(im,2,evals,"*") #Fill in edge values
im[(sapply(ena,rep,n)*(im!=0))>0]<-NA #Add NAs, if needed
#Return the result
im
}
#' @rdname network
#' @export
as.network<-function(x,...)
UseMethod("as.network")
#' @name as.network.matrix
#'
#' @title Coercion from Matrices to Network Objects
#'
#' @description \code{as.network.matrix} attempts to coerce its first argument to an object
#' of class \code{network}.
#'
#' @details Depending on \code{matrix.type}, one of three edgeset constructor methods
#' will be employed to read the input matrix (see
#' \code{\link{edgeset.constructors}}). If \code{matrix.type==NULL},
#' \code{\link{which.matrix.type}} will be used to guess the appropriate matrix
#' type.
#'
#' The coercion methods will recognize and attempt to utilize the \code{sna}
#' extended matrix attributes where feasible. These are as follows: \itemize{
#' \item\code{"n"}: taken to indicate number of vertices in the network.
#' \item\code{"bipartite"}: taken to indicate the network's \code{bipartite}
#' attribute, where present. \item\code{"vnames"}: taken to contain vertex
#' names, where present. } These attributes are generally used with edgelists,
#' and indeed data in \code{sna} edgelist format should be transparently
#' converted in most cases. Where the extended matrix attributes are in
#' conflict with the actual contents of \code{x}, results are no guaranteed
#' (but the latter will usually override the former). For an edge list, the
#' number of nodes in a network is determined by the number of unique nodes
#' specified. If there are isolate nodes not in the edge list, the "n"
#' attribute needs to be set. See example below.
#'
#' @param x a matrix containing an adjacency structure
#' @param matrix.type one of \code{"adjacency"}, \code{"edgelist"},
#' \code{"incidence"}, or \code{NULL}
#' @param directed logical; should edges be interpreted as directed?
#' @param hyper logical; are hyperedges allowed?
#' @param loops logical; should loops be allowed?
#' @param multiple logical; are multiplex edges allowed?
#' @param bipartite count; should the network be interpreted as bipartite? If
#' present (i.e., non-NULL) it is the count of the number of actors in the
#' bipartite network. In this case, the number of nodes is equal to the number
#' of actors plus the number of events (with all actors preceding all events).
#' The edges are then interpreted as nondirected.
#' @param ignore.eval logical; ignore edge values?
#' @param names.eval optionally, the name of the attribute in which edge values
#' should be stored
#' @param na.rm logical; ignore missing entries when constructing the network?
#' @param edge.check logical; perform consistency checks on new edges?
#' @param ... additional arguments
#' @return An object of class \code{network}
#' @author Carter T. Butts \email{buttsc@@uci.edu} and David Hunter
#' \email{dhunter@@stat.psu.edu}
#' @seealso \code{\link{edgeset.constructors}}, \code{\link{network}},
#' \code{\link{which.matrix.type}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords classes graphs
#' @examples
#'
#' #Draw a random matrix
#' m<-matrix(rbinom(25,1,0.5),5)
#' diag(m)<-0
#'
#' #Coerce to network form
#' g<-as.network.matrix(m,matrix.type="adjacency")
#'
#' # edge list example. Only 4 nodes in the edge list.
#' m = matrix(c(1,2, 2,3, 3,4), byrow = TRUE, nrow=3)
#' attr(m, 'n') = 7
#' as.network(m, matrix.type='edgelist')
#'
#' @export as.network.default
#' @export
as.network.default<-function(x,...)
as.network.matrix(x,...)
#' @export as.network.network
#' @export
as.network.network<-function(x,...)
x
#
# MSH modified for bipartite
#
#' @rdname as.network.matrix
#' @export as.network.matrix
#' @export
as.network.matrix<-function(x, matrix.type=NULL,
directed=TRUE, hyper=FALSE, loops=FALSE, multiple=FALSE,
bipartite=FALSE,
ignore.eval=TRUE, names.eval=NULL, na.rm=FALSE, edge.check=FALSE, ...){
#Before doing anything else, pull any attributes from the matrix that we
#might need....
nattr<-attr(x,"n") #Currently, only using sna edgelist attributes
battr<-attr(x,"bipartite")
vattr<-attr(x,"vnames")
#Convert logicals to numeric form
if(is.logical(x)){x <- 1*x}
#Get the matrix type
if(is.null(matrix.type))
matrix.type<-which.matrix.type(x)
else
matrix.type<-match.arg(matrix.type,c("adjacency","incidence","edgelist",
"bipartite"))
if(is.logical(bipartite)&&bipartite)
matrix.type<-"bipartite"
#Patch adj->bipartite case
if((bipartite>0)&&(matrix.type=="adjacency")&&(NROW(x)==bipartite))
matrix.type<-"bipartite"
# Add names if available
unames <- NULL
if(matrix.type=="edgelist"){
if(dim(x)[2]>2)
vals<-x[,-(1:2),drop=FALSE]
else
vals<-NULL
if(is.character(x<-as.matrix(x[,1:2,drop=FALSE]))){
unames <- sort(unique(as.vector(x)))
x <- cbind(match(x[,1],unames),match(x[,2],unames))
}
if(!is.null(vals)){
x<-cbind(x,vals)
if (is.null(colnames(vals))){
colnames(x)<-NULL #R creates these, and they are annoying later
} else {
# leave colnames for vals intact so they can be used for edge attributes
colnames(x)<-c(NA,NA,colnames(vals))
}
}
}
if(matrix.type=="adjacency" && !is.null(colnames(x))){
unames <- colnames(x)
}
if(matrix.type=="bipartite"){
directed <- FALSE
bipartite <- dim(x)[1]
unames <- 1:sum(dim(x))
if(!is.null(rownames(x))){
unames[1:(dim(x)[1])] <- rownames(x)
}
if(!is.null(colnames(x))){
unames[(dim(x)[1])+(1:(dim(x)[2]))] <- colnames(x)
}
}
if(!is.null(vattr)) #If given names, use 'em
unames<-vattr
#Initialize the network object
if(is.numeric(nattr)){ #If given n, use it
n<-nattr
}else{
if((matrix.type=="edgelist")&&(NROW(x)==0))
stop("Cannot determine network size from zero-length edgelist; assign an n attribute to use data of this type.\n")
n<-switch(matrix.type, #Extract n based on matrix type
adjacency=dim(x)[1],
incidence=dim(x)[1],
bipartite=sum(dim(x)),
edgelist=max(x[,1:2]),
)
}
if(is.numeric(battr)) #If given bipartite info, use it
bipartite<-battr
# if we are going to build an adjacency matrix and it doesn't match the nattr, give an error, because otherwise will crash
# this may happen if a square edgelist with attribute information is passed in
if (is.numeric(nattr) & matrix.type=='adjacency'){
if (nattr != ncol(x)){
stop('the dimensions of the matrix argument (',nrow(x),' by ', ncol(x),') do not match the network size indicated by the attached n attribute (',nattr,'), perhaps matrix.type argument is not correct')
}
}
g<-network.initialize(n,directed=directed, hyper=hyper, loops=loops, multiple=multiple,bipartite=bipartite)
#Call the specific coercion routine, depending on matrix type
g<-switch(matrix.type,
adjacency=network.adjacency(x,g,
ignore.eval,names.eval,na.rm,edge.check),
incidence=network.incidence(x,g,
ignore.eval,names.eval,na.rm,edge.check),
bipartite=network.bipartite(x,g,
ignore.eval,names.eval,na.rm,edge.check),
edgelist=network.edgelist(x,g,
ignore.eval,names.eval,na.rm,edge.check)
)
if(!is.null(unames)){
g <- set.vertex.attribute(g,"vertex.names", unames)
}
#Return the result
g
}
#Force the input into sociomatrix form. This is a shortcut to
#as.matrix.network.adjacency, which ensures that a raw matrix is
#passed through as-is.
#' Coerce One or More Networks to Sociomatrix Form
#'
#' \code{as.sociomatrix} takes adjacency matrices, adjacency arrays,
#' \code{\link{network}} objects, or lists thereof, and returns one or more
#' sociomatrices (adjacency matrices) as appropriate. This routine provides a
#' useful input-agnostic front-end to functions which process adjacency
#' matrices.
#'
#' \code{as.sociomatrix} provides a more general means of coercing input into
#' adjacency matrix form than \code{\link{as.matrix.network}}. In particular,
#' \code{as.sociomatrix} will attempt to coerce all input networks into the
#' appropriate form, and return the resulting matrices in a regularized manner.
#' If \code{simplify==TRUE}, \code{as.sociomatrix} attempts to return the
#' matrices as a single adjacency array. If the input networks are of variable
#' size, or if \code{simplify==FALSE}, the networks in question are returned as
#' a list of matrices. In any event, a single input network is always returned
#' as a lone matrix.
#'
#' If \code{attrname} is given, the specified edge attribute is used to extract
#' edge values from any \code{\link{network}} objects contained in \code{x}.
#' Note that the same attribute will be used for all networks; if no attribute
#' is specified, the standard dichotomous default will be used instead.
#'
#' @param x an adjacency matrix, array, \code{\link{network}} object, or list
#' thereof.
#' @param attrname optionally, the name of a network attribute to use for
#' extracting edge values (if \code{x} is a \code{\link{network}} object).
#' @param simplify logical; should \code{as.sociomatrix} attempt to combine its
#' inputs into an adjacency array (\code{TRUE}), or return them as separate
#' list elements (\code{FALSE})?
#' @param expand.bipartite logical; if \code{x} is bipartite, should we return
#' the full adjacency matrix (rather than the abbreviated, two-mode form)?
#' @param ... additional arguments for the coercion routine.
#' @return One or more adjacency matrices. If all matrices are of the same
#' dimension and \code{simplify==TRUE}, the matrices are joined into a single
#' array; otherwise, the return value is a list of single adjacency matrices.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{as.matrix.network}}, \code{\link{network}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords graphs manip
#' @examples
#'
#' #Generate an adjacency array
#' g<-array(rbinom(100,1,0.5),dim=c(4,5,5))
#'
#' #Generate a network object
#' net<-network(matrix(rbinom(36,1,0.5),6,6))
#'
#' #Coerce to adjacency matrix form using as.sociomatrix
#' as.sociomatrix(g,simplify=TRUE) #Returns as-is
#' as.sociomatrix(g,simplify=FALSE) #Returns as list
#' as.sociomatrix(net) #Coerces to matrix
#' as.sociomatrix(list(net,g)) #Returns as list of matrices
#'
#' @export as.sociomatrix
as.sociomatrix<-function(x, attrname=NULL, simplify=TRUE, expand.bipartite=FALSE, ...){
if(is.network(x)){ #If network, coerce to adjacency matrix
g<-as.matrix.network.adjacency(x,attrname=attrname, expand.bipartite=expand.bipartite,...)
}else if(is.matrix(x)||is.array(x)){ #If an array/matrix, use as-is
g<-x
}else if(is.list(x)){ #If a list, recurse on list elements
g<-lapply(x,as.sociomatrix,attrname=attrname,simplify=simplify, expand.bipartite=expand.bipartite,...)
}else{
stop("as.sociomatrix input must be an adjacency matrix/array, network, or list.")
}
#Convert into the appropriate return format
if(is.list(g)){ #Collapse if needed
if(length(g)==1){
g<-g[[1]]
if((!simplify)&&(length(dim(g))==3)){ #Coerce to a list of matrices?
out<-list()
for(i in 1:dim(g)[1])
out[[i]]<-g[i,,]
}else{
out<-g
}
}else{
#Coerce to array form?
if(simplify){
dims<-sapply(g,dim)
if(is.list(dims)){ #Dims must not be of equal length
mats<-sapply(dims,length)
mats[mats==1]<-0
mats[mats==2]<-1
mats[mats==3]<-sapply(dims[mats==3],"[[",1)
mats<-cumsum(mats)
dims<-sapply(dims,"[",2)
}else{ #Dims are of equal length
if(NROW(dims)==3) #Determine number of matrices per entry
mats<-cumsum(dims[1,])
else
mats<-1:NCOL(dims)
dims<-dims[2,] #Get ncols
}
if((!any(is.null(dims)))&&(length(unique(dims))==1)&&(all(mats>0))){
out<-array(dim=c(mats[length(mats)],dims[1],dims[1]))
for(i in 1:length(mats))
out[(c(0,mats)[i]+1):(mats[i]),,]<-g[[i]]
}else
out<-g
}else
out<-g
}
}else{
if((!simplify)&&(length(dim(g))==3)){ #Coerce to a list of matrices?
out<-list()
for(i in 1:dim(g)[1])
out[[i]]<-g[i,,]
}else
out<-g
}
#Return the result
out
}
|