1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
|
######################################################################
#
# operators.R
#
# Written by Carter T. Butts <buttsc@uci.edu>; portions contributed by
# David Hunter <dhunter@stat.psu.edu> and Mark S. Handcock
# <handcock@u.washington.edu>.
#
# Last Modified 06/06/21
# Licensed under the GNU General Public License version 2 (June, 1991)
# or greater
#
# Part of the R/network package
#
# This file contains various operators which take networks as inputs.
#
# Contents:
#
# "$<-.network"
# "[.network"
# "[<-.network"
# "%e%"
# "%e%<-"
# "%eattr%"
# "%eattr%<-"
# "%n%"
# "%n%<-"
# "%nattr%"
# "%nattr%<-"
# "%s%"
# "%v%"
# "%v%<-"
# "%vattr%"
# "%vattr%<-"
# "+"
# "+.default"
# "+.network"
# "-"
# "-.default"
# "-.network"
# "*"
# "*.default"
# "*.network"
# "!.network"
# "|.network"
# "&.network"
# "%*%.network"
# "%c%"
# "%c%.network"
# networkOperatorSetup
# prod.network
# sum.network
#
######################################################################
# removed this function because it appears that '<-' is no longer a generic in R, so it was never getting called and the copy was not being made. See ticket #550
#' @export "<-.network"
"<-.network"<-function(x,value){
.Deprecated("network.copy or '<-' works just fine",msg="The network assignment S3 method '<-.network' has been deprecated because the operator '<-' is no longer an S3 generic in R so the .network version does not appear to be called. If you see this warning, please contact the maintainers to let us know you use this function")
x<-network.copy(value)
return(x)
}
# A helper function to check that a particular edgelist can be validly queried or assigned to.
#' @importFrom statnet.common NVL
out_of_bounds <- function(x, el){
n <- network.size(x)
bip <- NVL(x%n%"bipartite", FALSE)
anyNA(el) || any(el<1L) || any(el>n) ||
(bip && (any((el[,1]<=bip) == (el[,2]<=bip))))
}
# removed so that will dispatch to internal primitive method #642
#"$<-.network"<-function(x,i,value){
# cl<-oldClass(x)
# class(x)<-NULL
# x[[i]]<-value
# class(x)<-cl
# return(x)
#}
#' Extraction and Replacement Operators for Network Objects
#'
#' Various operators which allow extraction or replacement of various
#' components of a \code{network} object.
#'
#' Indexing for edge extraction operates in a manner analogous to \code{matrix}
#' objects. Thus, \code{x[,]} selects all vertex pairs, \code{x[1,-5]} selects
#' the pairing of vertex 1 with all vertices except for 5, etc. Following
#' this, it is acceptable for \code{i} and/or \code{j} to be logical vectors
#' indicating which vertices are to be included. During assignment, an attempt
#' is made to match the elements of \code{value} to the extracted pairs in an
#' intelligent way; in particular, elements of \code{value} will be replicated
#' if too few are supplied (allowing expressions like \code{x[1,]<-1}). Where
#' \code{names.eval==NULL}, zero and non-zero values are taken to indicate the
#' presence of absence of edges. \code{x[2,4]<-6} thus adds a single (2,4)
#' edge to \code{x}, and \code{x[2,4]<-0} removes such an edge (if present).
#' If \code{x} is multiplex, assigning 0 to a vertex pair will eliminate
#' \emph{all} edges on that pair. Pairs are taken to be directed where
#' \code{is.directed(x)==TRUE}, and undirected where
#' \code{is.directed(x)==FALSE}.
#'
#' If an edge attribute is specified using \code{names.eval}, then the provided
#' values will be assigned to that attribute. When assigning values, only
#' extant edges are employed (unless \code{add.edges==TRUE}); in the latter
#' case, any non-zero assignment results in the addition of an edge where
#' currently absent. If the attribute specified is not present on a given
#' edge, it is added. Otherwise, any existing value is overwritten. The
#' \code{\%e\%} operator can also be used to extract/assign edge values; in those
#' roles, it is respectively equivalent to \code{get.edge.value(x,attrname)}
#' and \code{set.edge.value(x,attrname=attrname,value=value)} (if \code{value}
#' is a matrix) and \code{set.edge.attribute(x,attrname=attrname,value=value)}
#' (if \code{value} is anything else). That is, if \code{value} is a matrix,
#' the assignment operator treats it as an adjacency matrix; and if not, it
#' treats it as a vector (recycled as needed) in the internal ordering of edges
#' (i.e., edge IDs), skipping over deleted edges. In no case will attributes be
#' assigned to nonexisted edges.
#'
#' The \code{\%n\%} and \code{\%v\%} operators serve as front-ends to the network
#' and vertex extraction/assignment functions (respectively). In the
#' extraction case, \code{x \%n\% attrname} is equivalent to
#' \code{get.network.attribute(x,attrname)}, with \code{x \%v\% attrname}
#' corresponding to \code{get.vertex.attribute(x,attrname)}. In assignment,
#' the respective equivalences are to
#' \code{set.network.attribute(x,attrname,value)} and
#' \code{set.vertex.attribute(x,attrname,value)}. Note that the `%%`
#' assignment forms are generally slower than the named versions of the
#' functions beause they will trigger an additional internal copy of the
#' network object.
#'
#' The \code{\%eattr\%}, \code{\%nattr\%}, and \code{\%vattr\%} operators are
#' equivalent to \code{\%e\%}, \code{\%n\%}, and \code{\%v\%} (respectively). The
#' short forms are more succinct, but may produce less readable code.
#'
#' @name network.extraction
#'
#' @param x an object of class \code{network}.
#' @param i,j indices of the vertices with respect to which adjacency is to be
#' tested. Empty values indicate that all vertices should be employed (see
#' below).
#' @param na.omit logical; should missing edges be omitted (treated as
#' no-adjacency), or should \code{NA}s be returned? (Default: return \code{NA}
#' on missing.)
#' @param names.eval optionally, the name of an edge attribute to use for
#' assigning edge values.
#' @param add.edges logical; should new edges be added to \code{x} where edges
#' are absent and the appropriate element of \code{value} is non-zero?
#' @param value the value (or set thereof) to be assigned to the selected
#' element of \code{x}.
#' @param attrname the name of a network or vertex attribute (as appropriate).
#' @return The extracted data, or none.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{is.adjacent}}, \code{\link{as.sociomatrix}},
#' \code{\link{attribute.methods}}, \code{\link{add.edges}},
#' \code{\link{network.operators}}, and \code{\link{get.inducedSubgraph}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords graphs manip
#' @examples
#'
#' #Create a random graph (inefficiently)
#' g<-network.initialize(10)
#' g[,]<-matrix(rbinom(100,1,0.1),10,10)
#' plot(g)
#'
#' #Demonstrate edge addition/deletion
#' g[,]<-0
#' g[1,]<-1
#' g[2:3,6:7]<-1
#' g[,]
#'
#' #Set edge values
#' g[,,names.eval="boo"]<-5
#' as.sociomatrix(g,"boo")
#' #Assign edge values from a vector
#' g %e% "hoo" <- "wah"
#' g %e% "hoo"
#' g %e% "om" <- c("wow","whee")
#' g %e% "om"
#' #Assign edge values as a sociomatrix
#' g %e% "age" <- matrix(1:100, 10, 10)
#' g %e% "age"
#' as.sociomatrix(g,"age")
#'
#' #Set/retrieve network and vertex attributes
#' g %n% "blah" <- "Pork!" #The other white meat?
#' g %n% "blah" == "Pork!" #TRUE!
#' g %v% "foo" <- letters[10:1] #Letter the vertices
#' g %v% "foo" == letters[10:1] #All TRUE
#'
#' @export "[.network"
#' @export
"[.network"<-function(x,i,j,na.omit=FALSE){
narg<-nargs()+missing(na.omit)
n<-network.size(x)
bip <- x%n%"bipartite"
xnames <- network.vertex.names(x)
if(missing(i)){ #If missing, use 1:n
i <- if(is.bipartite(x)) 1:bip else 1:n
}
if((narg>3)&&missing(j)){
j <- if(is.bipartite(x)) (bip+1L):n else 1:n
}
if(is.matrix(i)&&(NCOL(i)==1)) #Vectorize if degenerate matrix
i<-as.vector(i)
if(is.matrix(i)){ #Still a matrix?
if(is.logical(i)){ #Subset w/T/F?
j<-col(i)[i]
i<-row(i)[i]
if(out_of_bounds(x, cbind(i,j))) stop("subscript out of bounds")
out<-is.adjacent(x,i,j,na.omit=na.omit)
}else{ #Were we passed a pair list?
if(is.character(i))
i<-apply(i,c(1,2),match,xnames)
if(out_of_bounds(x, i)) stop("subscript out of bounds")
out<-is.adjacent(x,i[,1],i[,2], na.omit=na.omit)
}
}else if((narg<3)&&missing(j)){ #Here, assume a list of cell numbers
ir<-1+((i-1)%%n)
ic<-1+((i-1)%/%n)
if(out_of_bounds(x, cbind(ir,ic))) stop("subscript out of bounds")
out<-is.adjacent(x,ir,ic,na.omit=na.omit)
}else{ #Otherwise, assume a vector or submatrix
if(is.character(i))
i<-match(i,xnames)
if(is.character(j))
j<-match(j,xnames)
i<-(1:n)[i] #Piggyback on R's internal tricks
j<-(1:n)[j]
if(length(i)==1){
if(out_of_bounds(x, cbind(i,j))) stop("subscript out of bounds")
out<-is.adjacent(x,i,j,na.omit=na.omit)
}else{
if(length(j)==1){
if(out_of_bounds(x, cbind(i,j))) stop("subscript out of bounds")
out<-is.adjacent(x,i,j,na.omit=na.omit)
}else{
jrep<-rep(j,rep.int(length(i),length(j)))
if(length(i)>0)
irep<-rep(i,times=ceiling(length(jrep)/length(i)))
if(out_of_bounds(x, cbind(irep,jrep))) stop("subscript out of bounds")
out<-matrix(is.adjacent(x,irep,jrep,na.omit=na.omit), length(i),length(j))
}
}
if((!is.null(xnames))&&is.matrix(out))
dimnames(out) <- list(xnames[i],xnames[j])
}
out+0 #Coerce to numeric
}
#' @rdname network.extraction
#' @export "[<-.network"
#' @export
"[<-.network"<-function(x,i,j,names.eval=NULL,add.edges=FALSE,value){
#For the common special case of x[,] <- 0, delete edges quickly by
#reconstructing new outedgelists, inedgelists, and edgelists,
#leaving the old ones to the garbage collector.
if(missing(i) && missing(j) && is.null(names.eval) && isTRUE(all(value==FALSE))){
if(length(x$mel)==0 || network.edgecount(x,na.omit=FALSE)==0) return(x) # Nothing to do; note that missing edges are still edges for the purposes of this.
x$oel <- rep(list(integer(0)), length(x$oel))
x$iel <- rep(list(integer(0)), length(x$iel))
x$mel <- list()
x$gal$mnext <- 1
return(x)
}
#Check for hypergraphicity
if(is.hyper(x))
stop("Assignment operator overloading does not currently support hypergraphic networks.");
#Set up the edge list to change
narg<-nargs()+missing(names.eval)+missing(add.edges)
n<-network.size(x)
xnames <- network.vertex.names(x)
bip <- x%n%"bipartite"
if(missing(i)){ #If missing, use 1:n
i <- if(is.bipartite(x)) 1:bip else 1:n
}
if((narg>5)&&missing(j)){
j <- if(is.bipartite(x)) (bip+1L):n else 1:n
}
if(is.matrix(i)&&(NCOL(i)==1)) #Vectorize if degenerate matrix
i<-as.vector(i)
if(is.matrix(i)){ #Still a matrix?
if(is.logical(i)){ #Subset w/T/F?
j<-col(i)[i]
i<-row(i)[i]
el<-cbind(i,j)
}else{ #Were we passed a pair list?
if(is.character(i))
i<-apply(i,c(1,2),match,xnames)
el<-i
}
}else if((narg<6)&&missing(j)){ #Here, assume a list of cell numbers
el<-1+cbind((i-1)%%n,(i-1)%/%n)
}else{ #Otherwise, assume a vector or submatrix
if(is.character(i))
i<-match(i,xnames)
if(is.character(j))
j<-match(j,xnames)
i<-(1:n)[i] #Piggyback on R's internal tricks
j<-(1:n)[j]
if(length(i)==1){
el<-cbind(rep(i,length(j)),j)
}else{
if(length(j)==1)
el<-cbind(i,rep(j,length(i)))
else{
jrep<-rep(j,rep.int(length(i),length(j)))
if(length(i)>0)
irep<-rep(i,times=ceiling(length(jrep)/length(i)))
el<-cbind(irep,jrep)
}
}
}
# Check bounds
if(out_of_bounds(x, el)) stop("subscript out of bounds")
#Set up values
if(is.matrix(value))
val<-value[cbind(match(el[,1],sort(unique(el[,1]))), match(el[,2],sort(unique(el[,2]))))]
else
val<-rep(as.vector(value),length.out=NROW(el))
#Perform the changes
if(is.null(names.eval)){ #If no names given, don't store values
for (k in seq_along(val)) {
eid <- get.edgeIDs(x,el[k,1],el[k,2],neighborhood="out", na.omit=FALSE)
if (!is.na(val[k]) & val[k] == 0) {
# delete edge
if (length(eid) > 0) x<-delete.edges(x,eid)
} else {
if (length(eid) == 0 & (has.loops(x)|(el[k,1]!=el[k,2]))) {
# add edge if needed
x<-add.edges(x,as.list(el[k,1]),as.list(el[k,2]))
eid <- get.edgeIDs(x,el[k,1],el[k,2],neighborhood="out", na.omit=FALSE)
}
if (is.na(val[k])) {
set.edge.attribute(x,"na",TRUE,eid) # set to NA
} else if (val[k] == 1) {
set.edge.attribute(x,"na",FALSE,eid) # set to 1
}
}
}
}else{ #An attribute name was given, so store values
epresent<-vector()
eid<-vector()
valsl<-list()
for(k in 1:NROW(el)){
if(is.adjacent(x,el[k,1],el[k,2],na.omit=FALSE)){ #Collect extant edges
loceid<-get.edgeIDs(x,el[k,1],el[k,2],neighborhood="out",na.omit=FALSE)
if(add.edges){ #Need to know if we're adding/removing edges
if(val[k]==0){ #If 0 and adding/removing, eliminate present edges
x<-delete.edges(x,loceid)
}else{ #Otherwise, add as normal
valsl<-c(valsl,as.list(rep(val[k],length(loceid))))
eid<-c(eid,loceid)
}
}else{
valsl<-c(valsl,as.list(rep(val[k],length(loceid))))
eid<-c(eid,loceid)
}
epresent[k]<-TRUE
}else
epresent[k]<-!is.na(val[k]) && (val[k]==0) #If zero, skip it; otherwise (including NA), add
}
if(sum(epresent)>0) #Adjust attributes for extant edges
x<-set.edge.attribute(x,names.eval,valsl,eid)
if(add.edges&&(sum(!epresent)>0)) #Add new edges, if needed
x<-add.edges(x,as.list(el[!epresent,1]),as.list(el[!epresent,2]), names.eval=as.list(rep(names.eval,sum(!epresent))),vals.eval=as.list(val[!epresent]))
}
#Return the modified graph
x
}
#' @rdname network.extraction
#' @export
"%e%"<-function(x,attrname){
get.edge.value(x,attrname=attrname)
}
#' @rdname network.extraction
#' @usage x \%e\% attrname <- value
#' @export
"%e%<-"<-function(x,attrname,value){
if(is.matrix(value)) set.edge.value(x,attrname=attrname,value=value)
else set.edge.attribute(x,attrname=attrname,value=value,e=valid.eids(x))
}
#' @rdname network.extraction
#' @export
"%eattr%"<-function(x,attrname){
x %e% attrname
}
#' @rdname network.extraction
#' @usage x \%eattr\% attrname <- value
#' @export
"%eattr%<-"<-function(x,attrname,value){
x %e% attrname <- value
}
#' @rdname network.extraction
#' @export
"%n%"<-function(x,attrname){
get.network.attribute(x,attrname=attrname)
}
#' @rdname network.extraction
#' @usage x \%n\% attrname <- value
#' @export
"%n%<-"<-function(x,attrname,value){
set.network.attribute(x,attrname=attrname,value=value)
}
#' @rdname network.extraction
#' @export
"%nattr%"<-function(x,attrname){
x %n% attrname
}
#' @rdname network.extraction
#' @usage x \%nattr\% attrname <- value
#' @export
"%nattr%<-"<-function(x,attrname,value){
x %n% attrname <- value
}
#' @rdname get.inducedSubgraph
#' @usage x \%s\% v
#' @export
"%s%"<-function(x,v){
if(is.list(v))
get.inducedSubgraph(x,v=v[[1]],alters=v[[2]])
else
get.inducedSubgraph(x,v=v)
}
#' @rdname network.extraction
#' @export
"%v%"<-function(x,attrname){
get.vertex.attribute(x,attrname=attrname)
}
#' @rdname network.extraction
#' @usage x \%v\% attrname <- value
#' @export
"%v%<-"<-function(x,attrname,value){
set.vertex.attribute(x,attrname=attrname,value=value)
}
#' @rdname network.extraction
#' @export
"%vattr%"<-function(x,attrname){
x %v% attrname
}
#' @rdname network.extraction
#' @usage x \%vattr\% attrname <- value
#' @export
"%vattr%<-"<-function(x,attrname,value){
x %v% attrname <- value
}
#"+"<-function(e1, e2, ...) UseMethod("+")
#
#"+.default"<-function(e1,e2,...) { (base::"+")(e1,e2) }
#
#"+.network"<-function(e1,e2,attrname=NULL,...){
# e1<-as.sociomatrix(e1,attrname=attrname)
# e2<-as.sociomatrix(e2,attrname=attrname)
# network(e1+e2,ignore.eval=is.null(attrname),names.eval=attrname)
#}
#' Network Operators
#'
#' These operators allow for algebraic manipulation of relational structures.
#'
#' In general, the binary network operators function by producing a new network
#' object whose edge structure is based on that of the input networks. The
#' properties of the new structure depend upon the inputs as follows: \itemize{
#' \item The size of the new network is equal to the size of the input networks
#' (for all operators save \code{\%c\%}), which must themselves be of equal size.
#' Likewise, the \code{bipartite} attributes of the inputs must match, and this
#' is preserved in the output. \item If either input network allows loops,
#' multiplex edges, or hyperedges, the output acquires this property. (If both
#' input networks do not allow these features, then the features are disallowed
#' in the output network.) \item If either input network is directed, the
#' output is directed; if exactly one input network is directed, the undirected
#' input is treated as if it were a directed network in which all edges are
#' reciprocated. \item Supplemental attributes (including vertex names, but
#' not edgwise missingness) are not transferred to the output. } The unary
#' operator acts per the above, but with a single input. Thus, the output
#' network has the same properties as the input, with the exception of
#' supplemental attributes.
#'
#' The behavior of the composition operator, \code{\%c\%}, is somewhat more
#' complex than the others. In particular, it will return a bipartite network
#' whenever either input network is bipartite \emph{or} the vertex names of the
#' two input networks do not match (or are missing). If both inputs are
#' non-bipartite and have identical vertex names, the return value will have
#' the same structure (but with loops). This behavior corresponds to the
#' interpretation of the composition operator as counting walks on labeled sets
#' of vertices.
#'
#' Hypergraphs are not yet supported by these routines, but ultimately will be
#' (as suggested by the above).
#'
#' The specific operations carried out by these operators are generally
#' self-explanatory in the non-multiplex case, but semantics in the latter
#' circumstance bear elaboration. The following summarizes the behavior of
#' each operator:
#' \describe{
#' \item{\code{+}}{An \eqn{(i,j)} edge is created in
#' the return graph for every \eqn{(i,j)} edge in each of the input graphs.}
#' \item{\code{-}}{An \eqn{(i,j)} edge is created in the return graph for
#' every \eqn{(i,j)} edge in the first input that is not matched by an
#' \eqn{(i,j)} edge in the second input; if the second input has more
#' \eqn{(i,j)} edges than the first, no \eqn{(i,j)} edges are created in the
#' return graph.}
#' \item{\code{*}}{An \eqn{(i,j)} edge is created for every
#' pairing of \eqn{(i,j)} edges in the respective input graphs.}
#' \item{\code{\%c\%}}{An \eqn{(i,j)} edge is created in the return graph for
#' every edge pair \eqn{(i,k),(k,j)} with the first edge in the first input and
#' the second edge in the second input.}
#' \item{\code{!}}{An \eqn{(i,j)} edge
#' is created in the return graph for every \eqn{(i,j)} in the input not having
#' an edge.}
#' \item{\code{|}}{An \eqn{(i,j)} edge is created in the return
#' graph if either input contains an \eqn{(i,j)} edge.}
#' \item{\code{&}}{An
#' \eqn{(i,j)} edge is created in the return graph if both inputs contain an
#' \eqn{(i,j)} edge.}
#' }
#' Semantics for missing-edge cases follow from the above,
#' under the interpretation that edges with \code{na==TRUE} are viewed as
#' having an unknown state. Thus, for instance, \code{x*y} with \code{x}
#' having 2 \eqn{(i,j)} non-missing and 1 missing edge and \code{y} having 3
#' respective non-missing and 2 missing edges will yield an output network with
#' 6 non-missing and 9 missing \eqn{(i,j)} edges.
#'
#' @rdname network-operators
#' @name network.operators
#'
#' @aliases %c%
#' @param e1 an object of class \code{network}.
#' @param e2 another \code{network}.
#' @return The resulting network.
#' @note Currently, there is a naming conflict between the composition operator
#' and the \code{\%c\%} operator in the \code{\link[sna]{sna}} package. This
#' will be resolved in future releases; for the time being, one can determine
#' which version of \code{\%c\%} is in use by varying which package is loaded
#' first.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{network.extraction}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#'
#' Wasserman, S. and Faust, K. (1994). \emph{Social Network Analysis: Methods
#' and Applications.} Cambridge: University of Cambridge Press.
#' @keywords math graphs
#' @examples
#'
#' #Create an in-star
#' m<-matrix(0,6,6)
#' m[2:6,1]<-1
#' g<-network(m)
#' plot(g)
#'
#' #Compose g with its transpose
#' gcgt<-g %c% (network(t(m)))
#' plot(gcgt)
#' gcgt
#'
#' #Show the complement of g
#' !g
#'
#' #Perform various arithmatic and logical operations
#' (g+gcgt)[,] == (g|gcgt)[,] #All TRUE
#' (g-gcgt)[,] == (g&(!(gcgt)))[,]
#' (g*gcgt)[,] == (g&gcgt)[,]
#' @export "+.network"
#' @export
"+.network"<-function(e1,e2){
#Set things up
outinf<-networkOperatorSetup(x=e1,y=e2)
#Select edges to add; semantics are "adding" edges, which is like union
#in the non-multigraph case, but actually results in accumulating edge copies
#in for multiplex graphs.
out<-outinf$net
if(is.hyper(out)){ #Hypergraph; for now, return an apology
stop("Elementwise operations on hypergraphs not yet supported.")
}else{ #Dyadic network
out<-outinf$net
#For boolean addition, take the union of edge sets
el<-rbind(outinf$elx,outinf$ely)
elna<-rbind(outinf$elnax,outinf$elnay)
if(!is.multiplex(out)){ #If not multiplex, remove duplicates
el<-unique(el)
elna<-unique(elna)
if(NROW(el)>0&&NROW(elna)>0){
n<-network.size(out)
elnum<-(el[,1]-1)+n*(el[,2]-1)
elnanum<-(elna[,1]-1)+n*(elna[,2]-1)
elna<-elna[!(elnanum%in%elnum),,drop=FALSE] #For union, NA loses
}
}
if(NROW(el)>0) #Add non-missing edges
add.edges(out,tail=el[,1],head=el[,2])
if(NROW(elna)>0) #Add missing edges
add.edges(out,tail=elna[,1],head=elna[,2], names.eval=replicate(NROW(elna),list("na")), vals.eval=replicate(NROW(elna),list(list(na=TRUE))))
}
#Return the resulting network
out
}
#"-"<-function(e1, e2, ...) UseMethod("-")
#
#"-.default"<-function(e1,e2,...) { (base::"-")(e1,e2) }
#
#' @rdname network-operators
#' @export "-.network"
#' @export
"-.network"<-function(e1,e2){
#Set things up
outinf<-networkOperatorSetup(x=e1,y=e2)
#Semantics here are "edge subtraction"; this is like "and not" for the
#non-multiplex case, but in the latter we can think of it as subtracting
#copies of edges (so if there were 5 copies of (i,j) in e1 and 2 copies in
#e2, we would be left with 3 copies). Note that this means that NAs are
#asymmetric: an edge in e2 will first cancel a "sure" edge, and then an
#NA edge when the sure ones are exhausted. NA edges in e2 don't cancel
#sure edges in e1, but they render them unsure (i.e., NA). NAs in e2
#have no effect on remaining NAs in e1 (unsure vs unsure), nor on 0s.
out<-outinf$net
if(is.hyper(out)){ #Hypergraph; for now, return an apology
stop("Elementwise operations on hypergraphs not yet supported.")
}else{ #Dyadic network
out<-outinf$net
#For boolean subtraction, want edges in e1 that are not in e2
el<-outinf$elx
elna<-outinf$elnax
if(!is.multiplex(out)){ #If not multiplex, cancellation is absolute
n<-network.size(out)
elnum<-(el[,1]-1)+n*(el[,2]-1)
elnanum<-(elna[,1]-1)+n*(elna[,2]-1)
elynum<-(outinf$ely[,1]-1)+n*(outinf$ely[,2]-1)
elynanum<-(outinf$elnay[,1]-1)+n*(outinf$elnay[,2]-1)
#For every edge or NA edge in x, kill it if in ely
sel<-!(elnum%in%elynum)
el<-el[sel,,drop=FALSE]
elnum<-elnum[sel]
sel<-!(elnanum%in%elynum)
elna<-elna[sel,,drop=FALSE]
elnanum<-elnanum[sel]
#Now, for the remaining edges from x, set to NA if in elyna
sel<-!(elnum%in%elynanum)
elna<-rbind(elna,el[!sel,,drop=FALSE])
el<-el[sel,,drop=FALSE]
#Clean up any non-uniqueness (recall that el, elna started unique)
elna<-unique(elna)
}else{ #If multiplex, cancellation is 1:1
n<-network.size(out)
elnum<-(el[,1]-1)+n*(el[,2]-1)
elnanum<-(elna[,1]-1)+n*(elna[,2]-1)
elynum<-(outinf$ely[,1]-1)+n*(outinf$ely[,2]-1)
elynanum<-(outinf$elnay[,1]-1)+n*(outinf$elnay[,2]-1)
#Every edge in ely kills one copy of the corresponding edge in el
i<-1
while((NROW(el)>0)&&(i<=length(elynum))){
j<-match(elynum[i],elnum)
if(is.na(j)){ #No match; increment i
i<-i+1
}else{ #Match! Cancel both and don't increment
el<-el[-j,,drop=FALSE]
elnum<-elnum[-j]
elynum<-elynum[-i]
}
}
#Every remaining ely kills one copy of the corresponding edge in elna
i<-1
while((NROW(elna)>0)&&(i<=length(elynum))){
j<-match(elynum[i],elnanum)
if(is.na(j)){ #No match; increment i
i<-i+1
}else{ #Match! Cancel both and don't increment
elna<-elna[-j,,drop=FALSE]
elnanum<-elnanum[-j]
elynum<-elynum[-i]
}
}
#Every elnay converts one corresponding el to elna
i<-1
while((NROW(el)>0)&&(i<=length(elynanum))){
j<-match(elynanum[i],elnum)
if(is.na(j)){ #No match; increment i
i<-i+1
}else{ #Match! Cancel both and don't increment
elna<-rbind(elna,el[j,,drop=FALSE])
el<-el[-j,,drop=FALSE]
elnum<-elnum[-j]
elynanum<-elynanum[-i]
}
}
}
if(NROW(el)>0) #Add non-missing edges
add.edges(out,tail=el[,1],head=el[,2])
if(NROW(elna)>0) #Add missing edges
add.edges(out,tail=elna[,1],head=elna[,2], names.eval=replicate(NROW(elna),list("na")), vals.eval=replicate(NROW(elna),list(list(na=TRUE))))
}
#Return the resulting network
out
}
#"*"<-function(e1, e2, ...) UseMethod("*")
#
#"*.default"<-function(e1,e2,...) { (base::"*")(e1,e2) }
#
#' @rdname network-operators
#' @export "*.network"
#' @export
"*.network"<-function(e1,e2){
#Set things up
outinf<-networkOperatorSetup(x=e1,y=e2)
#Multiplication semantics here are like "and" in the non-multiplex case,
#but in the multiplex case we assume that the number of edges is itself
#multplied. Multiplication is treated by pairing, so the number of sure
#edges is sure(e1)*sure(e2), and the number of NA edges is
#sure(e1)*NA(e2) + NA(e1)*sure(e2) + NA(e1)*NA(e2), where sure and NA are
#here counts of the (i,j) edge that are non-missing or missing
#(respectively).
out<-outinf$net
if(is.hyper(out)){ #Hypergraph; for now, return an apology
stop("Elementwise operations on hypergraphs not yet supported.")
}else{ #Dyadic network
out<-outinf$net
n<-network.size(out)
el<-matrix(nrow=0,ncol=2)
elna<-matrix(nrow=0,ncol=2)
if(is.multiplex(out)){ #Multiplex case: add edge for every pair
allpairs<-unique(rbind(outinf$elx,outinf$elnax,outinf$ely,outinf$elnay))
allnum<-(allpairs[,1]-1)+n*(allpairs[,2]-1)
elxnum<-(outinf$elx[,1]-1)+n*(outinf$elx[,2]-1)
elxnanum<-(outinf$elnax[,1]-1)+n*(outinf$elnax[,2]-1)
elynum<-(outinf$ely[,1]-1)+n*(outinf$ely[,2]-1)
elynanum<-(outinf$elnay[,1]-1)+n*(outinf$elnay[,2]-1)
allxcnt<-sapply(allnum,function(z,w){sum(z==w)},w=elxnum)
allxnacnt<-sapply(allnum,function(z,w){sum(z==w)},w=elxnanum)
allycnt<-sapply(allnum,function(z,w){sum(z==w)},w=elynum)
allynacnt<-sapply(allnum,function(z,w){sum(z==w)},w=elynanum)
el<-allpairs[rep(1:length(allnum),times=allxcnt*allycnt),,drop=FALSE]
elna<-allpairs[rep(1:length(allnum),times=allxcnt*allynacnt+ allxnacnt*allycnt+allxnacnt*allynacnt),,drop=FALSE]
}else{ #Non-multiplex case: "and"
elx<-unique(outinf$elx)
elnax<-unique(outinf$elnax)
ely<-unique(outinf$ely)
elnay<-unique(outinf$elnay)
elxnum<-(elx[,1]-1)+n*(elx[,2]-1)
elxnanum<-(elnax[,1]-1)+n*(elnax[,2]-1)
sel<-elxnanum%in%elxnum #Override NA with edges w/in x
if(sum(sel)>0){
elnax<-elnax[!sel,,drop=FALSE]
elxnanum<-elxnanum[!sel,,drop=FALSE]
}
elynum<-(ely[,1]-1)+n*(ely[,2]-1)
elynanum<-(elnay[,1]-1)+n*(elnay[,2]-1)
sel<-elynanum%in%elynum #Override NA with edges w/in y
if(sum(sel)>0){
elnay<-elnay[!sel,,drop=FALSE]
elynanum<-elynanum[!sel,,drop=FALSE]
}
#Check for matches across the "sure" edges
ematch<-match(elxnum,elynum)
el<-rbind(el,elx[!is.na(ematch),,drop=FALSE])
elx<-elx[is.na(ematch),,drop=FALSE] #Remove the matched cases
elxnum<-elxnum[is.na(ematch)]
if(length(ematch[!is.na(ematch)])>0){
ely<-ely[-ematch[!is.na(ematch)],,drop=FALSE]
elynum<-elynum[-ematch[!is.na(ematch)]]
}
#Match sure xs with unsure ys
if(length(elxnum)*length(elynanum)>0){
ematch<-match(elxnum,elynanum)
elna<-rbind(elna,elx[!is.na(ematch),,drop=FALSE])
elx<-elx[is.na(ematch),,drop=FALSE] #Remove the matched cases
elxnum<-elxnum[is.na(ematch)]
if(length(ematch[!is.na(ematch)])>0){
elnay<-elnay[-ematch[!is.na(ematch)],,drop=FALSE]
elynanum<-elynanum[-ematch[!is.na(ematch)]]
}
}
#Match sure ys with unsure xs
if(length(elynum)*length(elxnanum)>0){
ematch<-match(elynum,elxnanum)
elna<-rbind(elna,ely[!is.na(ematch),,drop=FALSE])
ely<-ely[is.na(ematch),,drop=FALSE] #Remove the matched cases
elynum<-elynum[is.na(ematch)]
if(length(ematch[!is.na(ematch)])>0){
elnax<-elnax[-ematch[!is.na(ematch)],,drop=FALSE]
elxnanum<-elxnanum[-ematch[!is.na(ematch)]]
}
}
#Match unsure xs with unsure ys
if(length(elxnanum)*length(elynanum)>0){
ematch<-match(elxnanum,elynanum)
elna<-rbind(elna,elnax[!is.na(ematch),,drop=FALSE])
}
}
if(NROW(el)>0) #Add non-missing edges
add.edges(out,tail=el[,1],head=el[,2])
if(NROW(elna)>0) #Add missing edges
add.edges(out,tail=elna[,1],head=elna[,2], names.eval=replicate(NROW(elna),list("na")), vals.eval=replicate(NROW(elna),list(list(na=TRUE))))
}
#Return the resulting network
out
}
#' @rdname network-operators
#' @export "!.network"
#' @export
"!.network"<-function(e1){
#Set things up
outinf<-networkOperatorSetup(x=e1)
#Select edges to add; semantics are "not" which means that one takes the
#non-multiplex complement of edges. Any sure edge implies 0, an NA edge
#without a sure edge implies NA, no sure or NA edge implies 1.
out<-outinf$net
if(is.hyper(out)){ #Hypergraph; for now, return an apology
stop("Elementwise operations on hypergraphs not yet supported.")
}else{ #Dyadic network
out<-outinf$net
n<-network.size(out)
#Start with the complete graph, and cut things away
el<-cbind(rep(1:n,each=n),rep(1:n,n))
if(!is.directed(out)) #Needs to match order in networkOperatorSetup
el<-el[el[,1]<=el[,2],]
if(!has.loops(out))
el<-el[el[,1]!=el[,2],]
elnum<-(el[,1]-1)+n*(el[,2]-1)
elna<-matrix(nrow=0,ncol=2)
#Remove all sure edges
elx<-unique(outinf$elx)
elxnum<-(elx[,1]-1)+n*(elx[,2]-1)
ematch<-match(elxnum,elnum)
if(length(ematch[!is.na(ematch)])>0){
el<-el[-ematch[!is.na(ematch)],,drop=FALSE]
elnum<-elnum[-ematch[!is.na(ematch)]]
}
#Convert all unsure edges to NAs
elnax<-unique(outinf$elnax)
elxnanum<-(elnax[,1]-1)+n*(elnax[,2]-1)
ematch<-match(elxnanum,elnum)
if(length(ematch[!is.na(ematch)])>0){
elna<-el[ematch[!is.na(ematch)],,drop=FALSE]
el<-el[-ematch[!is.na(ematch)],,drop=FALSE]
}
if(NROW(el)>0) #Add non-missing edges
add.edges(out,tail=el[,1],head=el[,2])
if(NROW(elna)>0) #Add missing edges
add.edges(out,tail=elna[,1],head=elna[,2], names.eval=replicate(NROW(elna),list("na")), vals.eval=replicate(NROW(elna),list(list(na=TRUE))))
}
#Return the resulting network
out
}
#' @rdname network-operators
#' @export "|.network"
#' @export
"|.network"<-function(e1,e2){
#Set things up
outinf<-networkOperatorSetup(x=e1,y=e2)
#Select edges to add; semantics are "or," which means that one takes the
#non-multiplex union of edges (like the non-multiplex case of the +
#operator). Here, a sure edge in either input graph will override an NA,
#and an NA will override a zero.
out<-outinf$net
if(is.hyper(out)){ #Hypergraph; for now, return an apology
stop("Elementwise operations on hypergraphs not yet supported.")
}else{ #Dyadic network
out<-outinf$net
#For boolean addition, take the union of edge sets
el<-rbind(outinf$elx,outinf$ely)
elna<-rbind(outinf$elnax,outinf$elnay)
el<-unique(el)
elna<-unique(elna)
if(NROW(el)>0&&NROW(elna)>0){
n<-network.size(out)
elnum<-(el[,1]-1)+n*(el[,2]-1)
elnanum<-(elna[,1]-1)+n*(elna[,2]-1)
elna<-elna[!(elnanum%in%elnum),,drop=FALSE] #For union, NA loses
}
if(NROW(el)>0) #Add non-missing edges
add.edges(out,tail=el[,1],head=el[,2])
if(NROW(elna)>0) #Add missing edges
add.edges(out,tail=elna[,1],head=elna[,2], names.eval=replicate(NROW(elna),list("na")), vals.eval=replicate(NROW(elna),list(list(na=TRUE))))
}
#Return the resulting network
out
}
#' @rdname network-operators
#' @export "&.network"
#' @export
"&.network"<-function(e1,e2){
#Set things up
outinf<-networkOperatorSetup(x=e1,y=e2)
#Select edges to add; semantics are "and," which means that one places an
#(i,j) edge if there exists a sure (i,j) edge in both e1 and e2. If there
#is not a sure edge in each but there is at least an unsure edge in each,
#then we place an NA in the (i,j) slot. Otherwise, we leave it empty. This
#is just like boolean "and" for non-multiplex graphs, but is not quite the
#same in the multiplex case.
out<-outinf$net
if(is.hyper(out)){ #Hypergraph; for now, return an apology
stop("Elementwise operations on hypergraphs not yet supported.")
}else{ #Dyadic network
out<-outinf$net
n<-network.size(out)
el<-matrix(nrow=0,ncol=2)
elna<-matrix(nrow=0,ncol=2)
elx<-unique(outinf$elx)
elnax<-unique(outinf$elnax)
ely<-unique(outinf$ely)
elnay<-unique(outinf$elnay)
elxnum<-(elx[,1]-1)+n*(elx[,2]-1)
elxnanum<-(elnax[,1]-1)+n*(elnax[,2]-1)
sel<-elxnanum%in%elxnum #Override NA with edges w/in x
if(sum(sel)>0){
elnax<-elnax[!sel,,drop=FALSE]
elxnanum<-elxnanum[!sel,,drop=FALSE]
}
elynum<-(ely[,1]-1)+n*(ely[,2]-1)
elynanum<-(elnay[,1]-1)+n*(elnay[,2]-1)
sel<-elynanum%in%elynum #Override NA with edges w/in y
if(sum(sel)>0){
elnay<-elnay[!sel,,drop=FALSE]
elynanum<-elynanum[!sel,,drop=FALSE]
}
#Check for matches across the "sure" edges
ematch<-match(elxnum,elynum)
el<-rbind(el,elx[!is.na(ematch),,drop=FALSE])
elx<-elx[is.na(ematch),,drop=FALSE] #Remove the matched cases
elxnum<-elxnum[is.na(ematch)]
if(length(ematch[!is.na(ematch)])>0){
ely<-ely[-ematch[!is.na(ematch)],,drop=FALSE]
elynum<-elynum[-ematch[!is.na(ematch)]]
}
#Match sure xs with unsure ys
if(length(elxnum)*length(elynanum)>0){
ematch<-match(elxnum,elynanum)
elna<-rbind(elna,elx[!is.na(ematch),,drop=FALSE])
elx<-elx[is.na(ematch),,drop=FALSE] #Remove the matched cases
elxnum<-elxnum[is.na(ematch)]
if(length(ematch[!is.na(ematch)])>0){
elnay<-elnay[-ematch[!is.na(ematch)],,drop=FALSE]
elynanum<-elynanum[-ematch[!is.na(ematch)]]
}
}
#Match sure ys with unsure xs
if(length(elynum)*length(elxnanum)>0){
ematch<-match(elynum,elxnanum)
elna<-rbind(elna,ely[!is.na(ematch),,drop=FALSE])
ely<-ely[is.na(ematch),,drop=FALSE] #Remove the matched cases
elynum<-elynum[is.na(ematch)]
if(length(ematch[!is.na(ematch)])>0){
elnax<-elnax[-ematch[!is.na(ematch)],,drop=FALSE]
elxnanum<-elxnanum[-ematch[!is.na(ematch)]]
}
}
#Match unsure xs with unsure ys
if(length(elxnanum)*length(elynanum)>0){
ematch<-match(elxnanum,elynanum)
elna<-rbind(elna,elnax[!is.na(ematch),,drop=FALSE])
}
if(NROW(el)>0) #Add non-missing edges
add.edges(out,tail=el[,1],head=el[,2])
if(NROW(elna)>0) #Add missing edges
add.edges(out,tail=elna[,1],head=elna[,2], names.eval=replicate(NROW(elna),list("na")), vals.eval=replicate(NROW(elna),list(list(na=TRUE))))
}
#Return the resulting network
out
}
# --------------------------- %c% -------------------------------
# conditionally create this method, as it may allready have
# been created and loaded by sna package
if (!exists('%c%')){
#' @export "%c%"
"%c%"<-function(e1,e2){
UseMethod("%c%",e1)
}
}
#' @rdname network-operators
#' @export "%c%.network"
#' @export
"%c%.network"<-function(e1,e2){
#Set things up
net1<-networkOperatorSetup(x=e1)
net2<-networkOperatorSetup(x=e2)
if(is.bipartite(net1$net)){ #Find in/out set sizes for e1
insz1<-net1$net%n%"bipartite"
outsz1<-net1$net%n%"n"-net1$net%n%"bipartite"
}else{
insz1<-net1$net%n%"n"
outsz1<-net1$net%n%"n"
}
if(is.bipartite(net2$net)){ #Find in/out set sizes for e2
insz2<-net2$net%n%"bipartite"
outsz2<-net2$net%n%"n"-net2$net%n%"bipartite"
}else{
insz2<-net2$net%n%"n"
outsz2<-net2$net%n%"n"
}
if(outsz1!=insz2)
stop("Non-conformable relations in %c%. Cannot compose.")
if(is.hyper(net1$net)||is.hyper(net2$net)) #Hypergraph; for now, stop
stop("Elementwise operations on hypergraphs not yet supported.")
#Test for vertex name matching (governs whether we treat as bipartite)
if(is.network(e1))
vnam1<-network.vertex.names(e1)
else if(!is.null(attr(e1,"vnames")))
vnam1<-attr(e1,"vnames")
else if(is.matrix(e1)||is.data.frame(e1)||is.array(e1))
vnam1<-row.names(e1)
else
vnam1<-NULL
if(is.network(e2))
vnam2<-network.vertex.names(e2)
else if(!is.null(attr(e2,"vnames")))
vnam2<-attr(e2,"vnames")
else if(is.matrix(e2)||is.data.frame(e2)||is.array(e2))
vnam2<-row.names(e2)
else
vnam2<-NULL
if((!is.null(vnam1))&&(!is.null(vnam2))&&(length(vnam1)==length(vnam2)) &&all(vnam1==vnam2))
vnammatch<-TRUE
else
vnammatch<-FALSE
#Decide on bipartite representation and create graph
if((!is.bipartite(net1$net))&&(!is.bipartite(net2$net))&&vnammatch)
out<-network.initialize(insz1, directed=is.directed(net1$net)|is.directed(net2$net), loops=TRUE,multiple=is.multiplex(net1$net)|is.multiplex(net2$net))
else
out<-network.initialize(insz1+outsz2,bipartite=insz1, directed=is.directed(net1$net)|is.directed(net2$net),multiple=is.multiplex(net1$net)|is.multiplex(net2$net))
#Accumulate edges (yeah, could be made more efficient -- cope with it)
el<-matrix(nrow=0,ncol=2)
elna<-matrix(nrow=0,ncol=2)
bip1<-net1$net%n%"bipartite"
bip2<-net2$net%n%"bipartite"
if(!is.directed(net1$net)){ #Double the edges if undirected
net1$elx<-rbind(net1$elx,net1$elx[net1$elx[,1]!=net1$elx[,2],2:1])
net1$elnax<-rbind(net1$elnax,net1$elnax[net1$elnax[,1]!=net1$elnax[,2],2:1])
}
if(!is.directed(net2$net)){ #Double the edges if undirected
net2$elx<-rbind(net2$elx,net2$elx[net2$elx[,1]!=net2$elx[,2],2:1])
net2$elnax<-rbind(net2$elnax,net2$elnax[net2$elnax[,1]!=net2$elnax[,2],2:1])
}
if(NROW(net1$elx)>0){
for(i in 1:NROW(net1$elx)){
sel<-net2$elx[net2$elx[,1]==(net1$elx[i,2]-bip1),2]-bip2
if(length(sel)>0)
el<-rbind(el,cbind(rep(net1$elx[i,1],length(sel)),sel+insz1))
}
}
if(NROW(net1$elnax)>0){
for(i in 1:NROW(net1$elnax)){
sel<-net2$elnax[net2$elnax[,1]==(net1$elnax[i,2]-bip1),2]-bip2
if(length(sel)>0)
elna<-rbind(elna,cbind(rep(net1$elnax[i,1],length(sel)),sel+insz1))
}
}
if(!is.bipartite(out)){ #If not bipartite, remove the insz1 offset
if(NROW(el)>0)
el[,2]<-el[,2]-insz1
if(NROW(elna)>0)
elna[,2]<-elna[,2]-insz1
}
if(!is.multiplex(out)){ #If necessary, consolidate edges
if(NROW(el)>1)
el<-unique(el)
if(NROW(elna)>1){
elna<-unique(elna)
}
if(NROW(elna)>0&&NROW(el)>0){
sel<-rep(TRUE,NROW(elna))
for(i in 1:NROW(elna)){
if(any((el[,1]==elna[i,1])&(el[,2]==elna[i,2])))
sel[i]<-FALSE
}
elna<-elna[sel,]
}
}
#Add the edges
if(NROW(el)>0) #Add non-missing edges
add.edges(out,tail=el[,1],head=el[,2])
if(NROW(elna)>0) #Add missing edges
add.edges(out,tail=elna[,1],head=elna[,2], names.eval=replicate(NROW(elna),list("na")), vals.eval=replicate(NROW(elna),list(list(na=TRUE))))
#Return the resulting network
out
}
#Given one or two input networks, return the information needed to generate
#output for binary or unary operations. The return value for this function is
#a list with elements:
# net: the output network (empty, but with attributes set)
# elx: the edgelist for the first network (non-missing)
# elnax: the list of missing edges for the first network
# ely: in the binary case, the edgelist for the second network (non-missing)
# elnay: in the binary case, the list of missing edges for the second network
#' @rdname network-internal
networkOperatorSetup<-function(x,y=NULL){
#Determine what attributes the output should have
if(is.network(x)){
nx<-network.size(x) #Get size, directedness, multiplexity, bipartition
dx<-is.directed(x)
mx<-is.multiplex(x)
hx<-is.hyper(x)
lx<-has.loops(x)
bx<-x%n%"bipartite"
if(is.null(bx))
bx<-FALSE
}else{ #If not a network object, resort to adj form
x<-as.sociomatrix(x)
if(NROW(x)!=NCOL(x)){ #Bipartite matrix
nx<-NROW(x)+NCOL(x)
dx<-FALSE
mx<-FALSE
hx<-FALSE
lx<-FALSE
bx<-NROW(x)
}else{
nx<-NROW(x)
dx<-TRUE
mx<-FALSE
hx<-FALSE
lx<-any(diag(x)!=0,na.rm=TRUE)
bx<-FALSE
}
}
if(is.null(y)){ #If y is null, setup for unary operator
n<-nx
d<-dx
m<-mx
h<-hx
b<-bx
l<-lx
x<-x
}else{ #Binary case
if(is.network(y)){
ny<-network.size(y) #Get size, directedness, multiplexity, bipartition
dy<-is.directed(y)
my<-is.multiplex(y)
hy<-is.hyper(y)
ly<-has.loops(y)
by<-y%n%"bipartite"
if(is.null(by))
by<-FALSE
}else{ #If not a network object, resort to adj form
y<-as.sociomatrix(y)
if(NROW(y)!=NCOL(y)){ #Bipartite matrix
ny<-NROW(y)+NCOL(y)
dy<-FALSE
my<-FALSE
hy<-FALSE
ly<-FALSE
by<-NROW(y)
}else{
ny<-NROW(y)
dy<-TRUE
my<-FALSE
hy<-FALSE
ly<-any(diag(y)!=0,na.rm=TRUE)
by<-FALSE
}
}
if(nx!=ny) #Make sure that our networks are conformable
stop("Non-conformable networks (must have same numbers of vertices for elementwise operations).")
if(bx!=by)
stop("Non-conformable networks (must have same bipartite status for elementwise operations).")
n<-nx #Output size=input size
b<-bx #Output bipartition=input bipartition
d<-dx|dy #Output directed if either input directed
l<-lx|ly #Output has loops if either input does
h<-hx|hy #Output hypergraphic if either input is
m<-mx|my #Output multiplex if either input is
}
#Create the empty network object that will ultimately receive the edges
net<-network.initialize(n=n,directed=d,hyper=h,loops=l,multiple=m,bipartite=b)
#Create the edge lists; what the operator does with 'em isn't our problem
if(h){ #Hypergraph
stop("Elementwise operations not yet supported on hypergraphs.")
}else{ #Dyadic network
#Get the raw edge information
if(is.network(x)){
elx<-as.matrix(x,matrix.type="edgelist")
elnax<-as.matrix(is.na(x),matrix.type="edgelist")
if(d&(!dx)){ #Need to add two-way edges; BTW, can't have (!d)&dx...
elx<-rbind(elx,elx[elx[,2]!=elx[,1],2:1,drop=FALSE])
elnax<-rbind(elnax,elnax[,2:1])
} else if (!dx){ # need to enforce edge ordering i<j for comparison
# replace all rows where i<j with j,i
elx[elx[,1]>elx[,2],]<-elx[elx[,1]>elx[,2],c(2,1)]
}
}else{
elx<-which(x!=0,arr.ind=TRUE)
elnax<-which(is.na(x),arr.ind=TRUE)
if(!d){ #Sociomatrix already has two-way edges, so might need to remove
elx<-elx[elx[,1]>=elx[,2],,drop=FALSE]
elnax<-elnax[elnax[,1]>=elnax[,2],,drop=FALSE]
}
}
if(!is.null(y)){
if(is.network(y)){
ely<-as.matrix(y,matrix.type="edgelist")
elnay<-as.matrix(is.na(y),matrix.type="edgelist")
if(d&(!dy)){ #Need to add two-way edges; BTW, can't have (!d)&dy...
ely<-rbind(ely,ely[ely[,2]!=ely[,1],2:1,drop=FALSE])
elnay<-rbind(elnay,elnay[,2:1])
} else if (!dy){ # need to enforce edge ordering i<j for comparison
# replace all rows where i<j with j,i
ely[ely[,1]>ely[,2],]<-ely[ely[,1]>ely[,2],c(2,1)]
}
}else{
ely<-which(y!=0,arr.ind=TRUE)
elnay<-which(is.na(y),arr.ind=TRUE)
if(!d){ #Sociomatrix already has two-way edges, so might need to remove
ely<-ely[ely[,1]>=ely[,2],,drop=FALSE]
elnay<-elnay[elnay[,1]>=elnay[,2],d,rop=FALSE]
}
}
}
if(!l){ #Pre-emptively remove loops, as needed
elx<-elx[elx[,1]!=elx[,2],,drop=FALSE]
elnax<-elnax[elnax[,1]!=elnax[,2],,drop=FALSE]
if(!is.null(y)){
ely<-ely[ely[,1]!=ely[,2],,drop=FALSE]
elnay<-elnay[elnay[,1]!=elnay[,2],,drop=FALSE]
}
}
if(!m){ #Pre-emptively remove multiplex edges, as needed
elx<-unique(elx)
elnax<-unique(elnax)
if(!is.null(y)){
ely<-unique(ely)
elnay<-unique(elnay)
}
}
}
#Return everything
if(is.null(y))
list(net=net,elx=elx,elnax=elnax)
else
list(net=net,elx=elx,elnax=elnax,ely=ely,elnay=elnay)
}
#' Combine Networks by Edge Value Multiplication
#'
#' Given a series of networks, \code{prod.network} attempts to form a new
#' network by multiplication of edges. If a non-null \code{attrname} is given,
#' the corresponding edge attribute is used to determine and store edge values.
#'
#' The network product method attempts to combine its arguments by edgewise
#' multiplication (\emph{not} composition) of their respective adjacency
#' matrices; thus, this method is only applicable for networks whose adjacency
#' coercion is well-behaved. Multiplication is effectively boolean unless
#' \code{attrname} is specified, in which case this is used to assess edge
#' values -- net values of 0 will result in removal of the underlying edge.
#'
#' Other network attributes in the return value are carried over from the first
#' element in the list, so some persistence is possible (unlike the
#' multiplication operator). Note that it is sometimes possible to
#' \dQuote{multiply} networks and raw adjacency matrices using this routine (if
#' all dimensions are correct), but more exotic combinations may result in
#' regrettably exciting behavior.
#'
#' @param \dots one or more \code{network} objects.
#' @param attrname the name of an edge attribute to use when assessing edge
#' values, if desired.
#' @param na.rm logical; should edges with missing data be ignored?
#' @return A \code{\link{network}} object.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{network.operators}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords arith graphs
#' @examples
#'
#' #Create some networks
#' g<-network.initialize(5)
#' h<-network.initialize(5)
#' i<-network.initialize(5)
#' g[1:3,,names.eval="marsupial",add.edges=TRUE]<-1
#' h[1:2,,names.eval="marsupial",add.edges=TRUE]<-2
#' i[1,,names.eval="marsupial",add.edges=TRUE]<-3
#'
#' #Combine by addition
#' pouch<-prod(g,h,i,attrname="marsupial")
#' pouch[,] #Edge values in the pouch?
#' as.sociomatrix(pouch,attrname="marsupial") #Recover the marsupial
#'
#' @export prod.network
#' @export
prod.network<-function(..., attrname=NULL, na.rm=FALSE){
inargs<-list(...)
y<-inargs[[1]]
for(i in (1:length(inargs))[-1]){
x<-as.sociomatrix(inargs[[i]],attrname=attrname)
if(na.rm)
x[is.na(x)]<-0
ym<-as.sociomatrix(y,attrname=attrname)
if(na.rm)
ym[is.na(ym)]<-0
y[,,names.eval=attrname,add.edges=TRUE]<-x*ym
}
y
}
#' Combine Networks by Edge Value Addition
#'
#' Given a series of networks, \code{sum.network} attempts to form a new
#' network by accumulation of edges. If a non-null \code{attrname} is given,
#' the corresponding edge attribute is used to determine and store edge values.
#'
#' The network summation method attempts to combine its arguments by addition
#' of their respective adjacency matrices; thus, this method is only applicable
#' for networks whose adjacency coercion is well-behaved. Addition is
#' effectively boolean unless \code{attrname} is specified, in which case this
#' is used to assess edge values -- net values of 0 will result in removal of
#' the underlying edge.
#'
#' Other network attributes in the return value are carried over from the first
#' element in the list, so some persistence is possible (unlike the addition
#' operator). Note that it is sometimes possible to \dQuote{add} networks and
#' raw adjacency matrices using this routine (if all dimensions are correct),
#' but more exotic combinations may result in regrettably exciting behavior.
#'
#' @param \dots one or more \code{network} objects.
#' @param attrname the name of an edge attribute to use when assessing edge
#' values, if desired.
#' @param na.rm logical; should edges with missing data be ignored?
#' @return A \code{\link{network}} object.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{network.operators}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords arith graphs
#' @examples
#'
#' #Create some networks
#' g<-network.initialize(5)
#' h<-network.initialize(5)
#' i<-network.initialize(5)
#' g[1,,names.eval="marsupial",add.edges=TRUE]<-1
#' h[1:2,,names.eval="marsupial",add.edges=TRUE]<-2
#' i[1:3,,names.eval="marsupial",add.edges=TRUE]<-3
#'
#' #Combine by addition
#' pouch<-sum(g,h,i,attrname="marsupial")
#' pouch[,] #Edge values in the pouch?
#' as.sociomatrix(pouch,attrname="marsupial") #Recover the marsupial
#'
#' @export sum.network
#' @export
sum.network<-function(..., attrname=NULL, na.rm=FALSE){
inargs<-list(...)
y<-inargs[[1]]
for(i in (1:length(inargs))[-1]){
x<-as.sociomatrix(inargs[[i]],attrname=attrname)
if(na.rm)
x[is.na(x)]<-0
ym<-as.sociomatrix(y,attrname=attrname)
if(na.rm)
ym[is.na(ym)]<-0
y[,,names.eval=attrname,add.edges=TRUE]<-x+ym
}
y
}
|