1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
|
######################################################################
#
# plot.R
#
# Written by Carter T. Butts <buttsc@uci.edu>; portions contributed by
# David Hunter <dhunter@stat.psu.edu> and Mark S. Handcock
# <handcock@u.washington.edu>.
#
# Last Modified 06/06/21
# Licensed under the GNU General Public License version 2 (June, 1991)
# or greater
#
# Part of the R/network package
#
# This file contains various routines related to network visualization.
#
# Contents:
#
# network.arrow
# network.loop
# network.vertex
# plot.network
# plot.network.default
#
######################################################################
#Introduce a function to make coordinates for a single polygon
make.arrow.poly.coords<-function(x0,y0,x1,y1,ahangle,ahlen,swid,toff,hoff,ahead, curve,csteps){
slen<-sqrt((x0-x1)^2+(y0-y1)^2) #Find the total length
if(curve==0){ #Straight edges
if(ahead){
coord<-rbind( #Produce a "generic" version w/head
c(-swid/2,toff),
c(-swid/2,slen-0.5*ahlen-hoff),
c(-ahlen*sin(ahangle),slen-ahlen*cos(ahangle)-hoff),
c(0,slen-hoff),
c(ahlen*sin(ahangle),slen-ahlen*cos(ahangle)-hoff),
c(swid/2,slen-0.5*ahlen-hoff),
c(swid/2,toff),
c(NA,NA)
)
}else{
coord<-rbind( #Produce a "generic" version w/out head
c(-swid/2,toff),
c(-swid/2,slen-hoff),
c(swid/2,slen-hoff),
c(swid/2,toff),
c(NA,NA)
)
}
}else{ #Curved edges
if(ahead){
inc<-(0:csteps)/csteps
coord<-rbind(
cbind(-curve*(1-(2*(inc-0.5))^2)-swid/2-sqrt(2)/2*(toff+inc*(hoff-toff)), inc*(slen-sqrt(2)/2*(hoff+toff)-ahlen*0.5)+sqrt(2)/2*toff),
c(ahlen*sin(-ahangle-pi/16)-sqrt(2)/2*hoff, slen-ahlen*cos(-ahangle-pi/16)-sqrt(2)/2*hoff),
c(-sqrt(2)/2*hoff,slen-sqrt(2)/2*hoff),
c(ahlen*sin(ahangle-pi/16)-sqrt(2)/2*hoff, slen-ahlen*cos(ahangle-pi/16)-sqrt(2)/2*hoff),
cbind(-curve*(1-(2*(rev(inc)-0.5))^2)+swid/2-sqrt(2)/2*(toff+rev(inc)*(hoff-toff)), rev(inc)*(slen-sqrt(2)/2*(hoff+toff)-ahlen*0.5)+sqrt(2)/2*toff),
c(NA,NA)
)
}else{
inc<-(0:csteps)/csteps
coord<-rbind(
cbind(-curve*(1-(2*(inc-0.5))^2)-swid/2-sqrt(2)/2*(toff+inc*(hoff-toff)), inc*(slen-sqrt(2)/2*(hoff+toff))+sqrt(2)/2*toff),
cbind(-curve*(1-(2*(rev(inc)-0.5))^2)+swid/2-sqrt(2)/2*(toff+rev(inc)*(hoff-toff)), rev(inc)*(slen-sqrt(2)/2*(hoff+toff))+sqrt(2)/2*toff),
c(NA,NA)
)
}
}
theta<-atan2(y1-y0,x1-x0)-pi/2 #Rotate about origin
rmat<-rbind(c(cos(theta),sin(theta)),c(-sin(theta),cos(theta)))
coord<-coord%*%rmat
coord[,1]<-coord[,1]+x0 #Translate to (x0,y0)
coord[,2]<-coord[,2]+y0
coord
}
#Custom arrow-drawing method for plot.network
#' Add Arrows or Segments to a Plot
#'
#' \code{network.arrow} draws a segment or arrow between two pairs of points;
#' unlike \code{\link{arrows}} or \code{\link{segments}}, the new plot element
#' is drawn as a polygon.
#'
#' \code{network.arrow} provides a useful extension of \code{\link{segments}}
#' and \code{\link{arrows}} when fine control is needed over the resulting
#' display. (The results also look better.) Note that edge curvature is
#' quadratic, with \code{curve} providing the maximum horizontal deviation of
#' the edge (left-handed). Head/tail offsets are used to adjust the end/start
#' points of an edge, relative to the baseline coordinates; these are useful
#' for functions like \code{\link{plot.network}}, which need to draw edges
#' incident to vertices of varying radii.
#'
#' @param x0 A vector of x coordinates for points of origin
#' @param y0 A vector of y coordinates for points of origin
#' @param x1 A vector of x coordinates for destination points
#' @param y1 A vector of y coordinates for destination points
#' @param length Arrowhead length, in current plotting units
#' @param angle Arrowhead angle (in degrees)
#' @param width Width for arrow body, in current plotting units (can be a
#' vector)
#' @param col Arrow body color (can be a vector)
#' @param border Arrow border color (can be a vector)
#' @param lty Arrow border line type (can be a vector)
#' @param offset.head Offset for destination point (can be a vector)
#' @param offset.tail Offset for origin point (can be a vector)
#' @param arrowhead Boolean; should arrowheads be used? (Can be a vector))
#' @param curve Degree of edge curvature (if any), in current plotting units
#' (can be a vector)
#' @param edge.steps For curved edges, the number of steps to use in
#' approximating the curve (can be a vector)
#' @param \dots Additional arguments to \code{\link{polygon}}
#' @return None.
#' @note \code{network.arrow} is a direct adaptation of
#' \code{\link[sna]{gplot.arrow}} from the \code{sna} package.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{plot.network}}, \code{\link{network.loop}},
#' \code{\link{polygon}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords aplot graphs
#' @examples
#'
#' #Plot two points
#' plot(1:2,1:2)
#'
#' #Add an edge
#' network.arrow(1,1,2,2,width=0.01,col="red",border="black")
#'
#' @export network.arrow
network.arrow<-function(x0,y0,x1,y1,length=0.1,angle=20,width=0.01,col=1,border=1,lty=1,offset.head=0,offset.tail=0,arrowhead=TRUE,curve=0,edge.steps=50,...){
if(length(x0)==0) #Leave if there's nothing to do
return()
#"Stretch" the arguments
n<-length(x0)
angle<-rep(angle,length.out=n)/360*2*pi
length<-rep(length,length.out=n)
width<-rep(width,length.out=n)
col<-rep(col,length.out=n)
border<-rep(border,length.out=n)
lty<-rep(lty,length.out=n)
arrowhead<-rep(arrowhead,length.out=n)
offset.head<-rep(offset.head,length.out=n)
offset.tail<-rep(offset.tail,length.out=n)
curve<-rep(curve,length.out=n)
edge.steps<-rep(edge.steps,length.out=n)
#Obtain coordinates
coord<-vector()
for(i in 1:n)
coord<-rbind(coord,make.arrow.poly.coords(x0[i],y0[i],x1[i],y1[i],angle[i],length[i], width[i],offset.tail[i],offset.head[i],arrowhead[i],curve[i],edge.steps[i]))
coord<-coord[-NROW(coord),]
#Draw polygons.
# the coord matrix has some NA rows, which will break it into multiple polygons
polygon(coord,col=col,border=border,lty=lty,...)
}
#Introduce a function to make coordinates for a single polygon
make.loop.poly.coords<-function(x0,y0,xctr,yctr,ahangle,ahlen,swid,off,rad,ahead,edge.steps){
#Determine the center of the plot
xoff <- x0-xctr
yoff <- y0-yctr
roff <- sqrt(xoff^2+yoff^2)
x0hat <- xoff/roff
y0hat <- yoff/roff
r0.vertex <- off
r0.loop <- rad
x0.loop <- x0hat*r0.loop
y0.loop <- y0hat*r0.loop
ang <- (((0:edge.steps)/edge.steps)*(1-(2*r0.vertex+0.5*ahlen*ahead)/ (2*pi*r0.loop))+r0.vertex/(2*pi*r0.loop))*2*pi+atan2(-yoff,-xoff)
ang2 <- ((1-(2*r0.vertex)/(2*pi*r0.loop))+r0.vertex/(2*pi*r0.loop))*2*pi+ atan2(-yoff,-xoff)
if(ahead){
x0.arrow <- x0.loop+(r0.loop+swid/2)*cos(ang2)
y0.arrow <- y0.loop+(r0.loop+swid/2)*sin(ang2)
coord<-rbind(
cbind(x0.loop+(r0.loop+swid/2)*cos(ang),
y0.loop+(r0.loop+swid/2)*sin(ang)),
cbind(x0.arrow+ahlen*cos(ang2-pi/2),
y0.arrow+ahlen*sin(ang2-pi/2)),
cbind(x0.arrow,y0.arrow),
cbind(x0.arrow+ahlen*cos(-2*ahangle+ang2-pi/2),
y0.arrow+ahlen*sin(-2*ahangle+ang2-pi/2)),
cbind(x0.loop+(r0.loop-swid/2)*cos(rev(ang)),
y0.loop+(r0.loop-swid/2)*sin(rev(ang))),
c(NA,NA)
)
}else{
coord<-rbind(
cbind(x0.loop+(r0.loop+swid/2)*cos(ang),
y0.loop+(r0.loop+swid/2)*sin(ang)),
cbind(x0.loop+(r0.loop-swid/2)*cos(rev(ang)),
y0.loop+(r0.loop-swid/2)*sin(rev(ang))),
c(NA,NA)
)
}
coord[,1]<-coord[,1]+x0 #Translate to (x0,y0)
coord[,2]<-coord[,2]+y0
coord
}
#Custom loop-drawing method for plot.network
#' Add Loops to a Plot
#'
#' \code{network.loop} draws a "loop" at a specified location; this is used to
#' designate self-ties in \code{\link{plot.network}}.
#'
#' \code{network.loop} is the companion to \code{\link{network.arrow}}; like
#' the latter, plot elements produced by \code{network.loop} are drawn using
#' \code{\link{polygon}}, and as such are scaled based on the current plotting
#' device. By default, loops are drawn so as to encompass a circular region of
#' radius \code{radius}, whose center is \code{offset} units from \code{x0,y0}
#' and at maximum distance from \code{xctr,yctr}. This is useful for functions
#' like \code{\link{plot.network}}, which need to draw loops incident to
#' vertices of varying radii.
#'
#' @param x0 a vector of x coordinates for points of origin.
#' @param y0 a vector of y coordinates for points of origin.
#' @param length arrowhead length, in current plotting units.
#' @param angle arrowhead angle (in degrees).
#' @param width width for loop body, in current plotting units (can be a
#' vector).
#' @param col loop body color (can be a vector).
#' @param border loop border color (can be a vector).
#' @param lty loop border line type (can be a vector).
#' @param offset offset for origin point (can be a vector).
#' @param edge.steps number of steps to use in approximating curves.
#' @param radius loop radius (can be a vector).
#' @param arrowhead boolean; should arrowheads be used? (Can be a vector.)
#' @param xctr x coordinate for the central location away from which loops
#' should be oriented.
#' @param yctr y coordinate for the central location away from which loops
#' should be oriented.
#' @param \dots additional arguments to \code{\link{polygon}}.
#' @return None.
#' @note \code{network.loop} is a direct adaptation of
#' \code{\link[sna]{gplot.loop}}, from the \code{sna} package.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{network.arrow}}, \code{\link{plot.network}},
#' \code{\link{polygon}}
#' @keywords aplot graphs
#' @examples
#'
#' #Plot a few polygons with loops
#' plot(0,0,type="n",xlim=c(-2,2),ylim=c(-2,2),asp=1)
#' network.loop(c(0,0),c(1,-1),col=c(3,2),width=0.05,length=0.4,
#' offset=sqrt(2)/4,angle=20,radius=0.5,edge.steps=50,arrowhead=TRUE)
#' polygon(c(0.25,-0.25,-0.25,0.25,NA,0.25,-0.25,-0.25,0.25),
#' c(1.25,1.25,0.75,0.75,NA,-1.25,-1.25,-0.75,-0.75),col=c(2,3))
#'
#'
#' @export network.loop
network.loop<-function(x0,y0,length=0.1,angle=10,width=0.01,col=1,border=1,lty=1,offset=0,edge.steps=10,radius=1,arrowhead=TRUE,xctr=0,yctr=0,...){
if(length(x0)==0) #Leave if there's nothing to do
return()
#"Stretch" the arguments
n<-length(x0)
angle<-rep(angle,length.out=n)/360*2*pi
length<-rep(length,length.out=n)
width<-rep(width,length.out=n)
col<-rep(col,length.out=n)
border<-rep(border,length.out=n)
lty<-rep(lty,length.out=n)
rad<-rep(radius,length.out=n)
arrowhead<-rep(arrowhead,length.out=n)
offset<-rep(offset,length.out=n)
#Obtain coordinates
coord<-vector()
for(i in 1:n)
coord<-rbind(coord,make.loop.poly.coords(x0[i],y0[i],xctr,yctr,angle[i],length[i], width[i],offset[i],rad[i],arrowhead[i],edge.steps))
coord<-coord[-NROW(coord),]
#Draw polygons
polygon(coord,col=col,border=border,lty=lty,...)
}
#Introduce a function to make coordinates for a single vertex polygon
# this version just uses the raw radius, so triangles appear half the size of circles
old.make.vertex.poly.coords<-function(x,y,r,s,rot){
ang<-(1:s)/s*2*pi+rot*2*pi/360
rbind(cbind(x+r*cos(ang),y+r*sin(ang)),c(NA,NA))
}
#Introduce a function to make coordinates for a single vertex polygon
# all polygons produced will have equal area
make.vertex.poly.coords<-function(x,y,r,s,rot){
# trap some edge cases
if(is.na(s) || s<2){
return(rbind(c(x,y),c(NA,NA))) # return a single point
} else {
#scale r (circumradius) to make area equal
area<-pi*r^2 # target area based desired r as radius of circle
# solve for new r as polygon radius that would match the area of the circle
r<-sqrt(2*area / (s*sin(2*pi/s)))
ang<-(1:s)/s*2*pi+rot*2*pi/360
return(rbind(cbind(x+r*cos(ang),y+r*sin(ang)),c(NA,NA)))
}
}
#Routine to plot vertices, using polygons
#' Add Vertices to a Plot
#'
#' \code{network.vertex} adds one or more vertices (drawn using
#' \code{\link{polygon}}) to a plot.
#'
#' \code{network.vertex} draws regular polygons of specified radius and number
#' of sides, at the given coordinates. This is useful for routines such as
#' \code{\link{plot.network}}, which use such shapes to depict vertices.
#'
#' @param x a vector of x coordinates.
#' @param y a vector of y coordinates.
#' @param radius a vector of vertex radii.
#' @param sides a vector containing the number of sides to draw for each
#' vertex.
#' @param border a vector of vertex border colors.
#' @param col a vector of vertex interior colors.
#' @param lty a vector of vertex border line types.
#' @param rot a vector of vertex rotation angles (in degrees).
#' @param lwd a vector of vertex border line widths.
#' @param \dots Additional arguments to \code{\link{polygon}}
#' @return None
#' @note \code{network.vertex} is a direct adaptation of
#' \code{\link[sna]{gplot.vertex}} from the \code{sna} package.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{plot.network}}, \code{\link{polygon}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#' @keywords aplot graphs
#' @examples
#'
#'
#' #Open a plot window, and place some vertices
#' plot(0,0,type="n",xlim=c(-1.5,1.5),ylim=c(-1.5,1.5),asp=1)
#' network.vertex(cos((1:10)/10*2*pi),sin((1:10)/10*2*pi),col=1:10,
#' sides=3:12,radius=0.1)
#'
#'
#' @export network.vertex
network.vertex<-function(x,y,radius=1,sides=4,border=1,col=2,lty=NULL,rot=0,lwd=1,...){
#Prep the vars
n<-length(x)
radius<-rep(radius,length.out=n)
sides<-rep(sides,length.out=n)
border<-rep(border,length.out=n)
col<-rep(col,length.out=n)
lty<-rep(lty,length.out=n)
rot<-rep(rot,length.out=n)
lwd<-rep(lwd,length.out=n)
#Obtain the coordinates
coord<-vector()
for(i in 1:length(x)) {
coord<-make.vertex.poly.coords(x[i],y[i],radius[i],sides[i],rot[i])
polygon(coord,border=border[i],col=col[i],lty=lty[i],lwd=lwd[i], ...)
}
#Plot the polygons
}
# draw a label for a network edge
#' Plots a label corresponding to an edge in a network plot.
#'
#' Draws a text labels on (or adjacent to) the line segments connecting
#' vertices on a network plot.
#'
#' Called internally by \code{\link{plot.network}} when \code{edge.label}
#' parameter is used. For directed, non-curved edges, the labels are shifted
#' towards the tail of the edge. Labels for curved edges are not shifted
#' because opposite-direction edges curve the opposite way. Makes a crude
#' attempt to shift labels to either side of line, and to draw the edge labels
#' for self-loops near the vertex. No attempt is made to avoid overlap between
#' vertex and edge labels.
#'
#' @param px0 vector of x coordinates of tail vertex of the edge
#' @param py0 vector of y coordinates of tail vertex of the edge
#' @param px1 vector of x coordinates of head vertex of the edge
#' @param py1 vector of y coordinate of head vertex of the edge
#' @param label vector strings giving labels to be drawn for edge edge
#' @param directed logical: is the underlying network directed? If FALSE,
#' labels will be drawn in the middle of the line segment, otherwise in the
#' first 3rd so that the labels for edges pointing in the opposite direction
#' will not overlap.
#' @param loops logical: if true, assuming the labels to be drawn belong to
#' loop-type edges and render appropriately
#' @param cex numeric vector giving the text expansion factor for each label
#' @param curve numeric vector controling the extent of edge curvature (0 =
#' straight line edges)
#' @param \dots additional arguments to be passed to \code{\link{text}}
#' @return no value is returned but text will be rendered on the active plot
#' @author skyebend
#' @export network.edgelabel
network.edgelabel<-function(px0,py0,px1,py1,label,directed,loops=FALSE,cex,curve=0,...){
curve<-rep(curve,length(label))
posl<-rep(0,length(label))
offsets<-rep(0.1,length(label))
if (loops){ # loops version
# assume coordinates are the first pair
# math is hard. For now just draw label near the vertex
lpx<-px0
lpy<-py0
# compute crude offset so that label doesn't land on vertex
# todo, this doesn't work well on all edge orientations
posl<-rep(0,length(label))
posl[(px0>px1) & (py0>py1)]<-4
posl[(px0<=px1) & (py0<=py1)]<-2
posl[(px0>px1) & (py0<=py1)]<-1
posl[(px0<=px1) & (py0>py1)]<-3
offsets<-rep(0.5,length(label))
} else { # either curved or straight line
if (all(curve==0)){ # straight line non-curved version
if (directed){
# draw labels off center of line so won't overlap
lpx<-px0+((px1-px0)/3)
lpy<-py0+((py1-py0)/3)
} else {
# draw labels on center of line
lpx<-px0+((px1-px0)/2)
lpy<-py0+((py1-py0)/2)
# assumes that line is straight
}
} else { # curved edge case
coords<-sapply(seq_len(length(label)),function(p){
make.arrow.poly.coords(px0[p],py0[p],px1[p],py1[p],ahangle = 0,ahlen=0,swid = 0,toff = 0,hoff=0,ahead = 0,curve=curve[p],csteps=2)[2,] # pick a point returned from the middle of the curve
})
lpx<-coords[1,]
lpy<-coords[2,]
# this should
}
# compute crude offset so that label doesn't land on line
# todo, this doesn't work well on all edge orientations
posl[(px0>px1) & (py0>py1)]<-1
posl[(px0<=px1) & (py0<=py1)]<-3
posl[(px0>px1) & (py0<=py1)]<-2
posl[(px0<=px1) & (py0>py1)]<-4
}
# debug coord location
text(lpx,lpy,labels=label,cex=cex,pos=posl,offset=offsets,...)
}
#Generic plot.network method.
#' Two-Dimensional Visualization for Network Objects
#'
#' \code{plot.network} produces a simple two-dimensional plot of network
#' \code{x}, using optional attribute \code{attrname} to set edge values. A
#' variety of options are available to control vertex placement, display
#' details, color, etc.
#'
#' \code{plot.network} is the standard visualization tool for the
#' \code{network} class. By means of clever selection of display parameters, a
#' fair amount of display flexibility can be obtained. Vertex layout -- if not
#' specified directly using \code{coord} -- is determined via one of the
#' various available algorithms. These should be specified via the \code{mode}
#' argument; see \code{\link{network.layout}} for a full list. User-supplied
#' layout functions are also possible -- see the aforementioned man page for
#' details.
#'
#' Note that where \code{is.hyper(x)==TRUE}, the network is converted to
#' bipartite adjacency form prior to computing coordinates. If
#' \code{interactive==TRUE}, then the user may modify the initial network
#' layout by selecting an individual vertex and then clicking on the location
#' to which this vertex is to be moved; this process may be repeated until the
#' layout is satisfactory.
#'
#' @rdname plot.network
#' @name plot.network.default
#'
#' @param x an object of class \code{network}.
#' @param attrname an optional edge attribute, to be used to set edge values.
#' @param label a vector of vertex labels, if desired; defaults to the vertex
#' labels returned by \code{\link{network.vertex.names}}. If \code{label} has
#' one element and it matches with a vertex attribute name, the value of the
#' attribute will be used. Note that labels may be set but hidden by the
#' \code{displaylabels} argument.
#' @param coord user-specified vertex coordinates, in an network.size(x)x2
#' matrix. Where this is specified, it will override the \code{mode} setting.
#' @param jitter boolean; should the output be jittered?
#' @param thresh real number indicating the lower threshold for tie values.
#' Only ties of value >\code{thresh} are displayed. By default,
#' \code{thresh}=0.
#' @param usearrows boolean; should arrows (rather than line segments) be used
#' to indicate edges?
#' @param mode the vertex placement algorithm; this must correspond to a
#' \code{\link{network.layout}} function.
#' @param displayisolates boolean; should isolates be displayed?
#' @param interactive boolean; should interactive adjustment of vertex
#' placement be attempted?
#' @param xlab x axis label.
#' @param ylab y axis label.
#' @param xlim the x limits (min, max) of the plot.
#' @param ylim the y limits of the plot.
#' @param pad amount to pad the plotting range; useful if labels are being
#' clipped.
#' @param label.pad amount to pad label boxes (if \code{boxed.labels==TRUE}),
#' in character size units.
#' @param displaylabels boolean; should vertex labels be displayed?
#' @param boxed.labels boolean; place vertex labels within boxes?
#' @param label.pos position at which labels should be placed, relative to
#' vertices. \code{0} results in labels which are placed away from the center
#' of the plotting region; \code{1}, \code{2}, \code{3}, and \code{4} result in
#' labels being placed below, to the left of, above, and to the right of
#' vertices (respectively); and \code{label.pos>=5} results in labels which are
#' plotted with no offset (i.e., at the vertex positions).
#' @param label.bg background color for label boxes (if
#' \code{boxed.labels==TRUE}); may be a vector, if boxes are to be of different
#' colors.
#' @param vertex.sides number of polygon sides for vertices; may be given as a
#' vector or a vertex attribute name, if vertices are to be of different types.
#' As of v1.12, radius of polygons are scaled so that all shapes have equal
#' area
#' @param vertex.rot angle of rotation for vertices (in degrees); may be given
#' as a vector or a vertex attribute name, if vertices are to be rotated
#' differently.
#' @param vertex.lwd line width of vertex borders; may be given as a vector or
#' a vertex attribute name, if vertex borders are to have different line
#' widths.
#' @param arrowhead.cex expansion factor for edge arrowheads.
#' @param label.cex character expansion factor for label text.
#' @param loop.cex expansion factor for loops; may be given as a vector or a
#' vertex attribute name, if loops are to be of different sizes.
#' @param vertex.cex expansion factor for vertices; may be given as a vector or
#' a vertex attribute name, if vertices are to be of different sizes.
#' @param edge.col color for edges; may be given as a vector, adjacency matrix,
#' or edge attribute name, if edges are to be of different colors.
#' @param label.col color for vertex labels; may be given as a vector or a
#' vertex attribute name, if labels are to be of different colors.
#' @param vertex.col color for vertices; may be given as a vector or a vertex
#' attribute name, if vertices are to be of different colors.
#' @param label.border label border colors (if \code{boxed.labels==TRUE}); may
#' be given as a vector, if label boxes are to have different colors.
#' @param vertex.border border color for vertices; may be given as a vector or
#' a vertex attribute name, if vertex borders are to be of different colors.
#' @param edge.lty line type for edge borders; may be given as a vector,
#' adjacency matrix, or edge attribute name, if edge borders are to have
#' different line types.
#' @param label.lty line type for label boxes (if \code{boxed.labels==TRUE});
#' may be given as a vector, if label boxes are to have different line types.
#' @param vertex.lty line type for vertex borders; may be given as a vector or
#' a vertex attribute name, if vertex borders are to have different line types.
#' @param edge.lwd line width scale for edges; if set greater than 0, edge
#' widths are scaled by \code{edge.lwd*dat}. May be given as a vector,
#' adjacency matrix, or edge attribute name, if edges are to have different
#' line widths.
#' @param edge.label if non-\code{NULL}, labels for edges will be drawn. May be
#' given as a vector, adjacency matrix, or edge attribute name, if edges are to
#' have different labels. A single value of \code{TRUE} will use edge ids as
#' labels. NOTE: currently doesn't work for curved edges.
#' @param edge.label.cex character expansion factor for edge label text; may be
#' given as a vector or a edge attribute name, if edge labels are to have
#' different sizes.
#' @param edge.label.col color for edge labels; may be given as a vector or a
#' edge attribute name, if labels are to be of different colors.
#' @param label.lwd line width for label boxes (if \code{boxed.labels==TRUE});
#' may be given as a vector, if label boxes are to have different line widths.
#' @param edge.len if \code{uselen==TRUE}, curved edge lengths are scaled by
#' \code{edge.len}.
#' @param edge.curve if \code{usecurve==TRUE}, the extent of edge curvature is
#' controlled by \code{edge.curv}. May be given as a fixed value, vector,
#' adjacency matrix, or edge attribute name, if edges are to have different
#' levels of curvature.
#' @param edge.steps for curved edges (excluding loops), the number of line
#' segments to use for the curve approximation.
#' @param loop.steps for loops, the number of line segments to use for the
#' curve approximation.
#' @param object.scale base length for plotting objects, as a fraction of the
#' linear scale of the plotting region. Defaults to 0.01.
#' @param uselen boolean; should we use \code{edge.len} to rescale edge
#' lengths?
#' @param usecurve boolean; should we use \code{edge.curve}?
#' @param suppress.axes boolean; suppress plotting of axes?
#' @param vertices.last boolean; plot vertices after plotting edges?
#' @param new boolean; create a new plot? If \code{new==FALSE}, vertices and
#' edges will be added to the existing plot.
#' @param layout.par parameters to the \code{\link{network.layout}} function
#' specified in \code{mode}.
#' @param \dots additional arguments to \code{\link{plot}}.
#' @return A two-column matrix containing the vertex positions as x,y
#' coordinates
#' @note \code{plot.network} is adapted (with minor modifications) from the
#' \code{\link[sna]{gplot}} function of the \code{sna} library (authors: Carter
#' T. Butts and Alex Montgomery); eventually, these two packages will be
#' integrated.
#' @author Carter T. Butts \email{buttsc@@uci.edu}
#' @seealso \code{\link{network}}, \code{\link{network.arrow}},
#' \code{\link{network.loop}}, \code{\link{network.vertex}}
#' @references Butts, C. T. (2008). \dQuote{network: a Package for Managing
#' Relational Data in R.} \emph{Journal of Statistical Software}, 24(2).
#' \doi{10.18637/jss.v024.i02}
#'
#' Wasserman, S., and Faust, K. (1994). \emph{Social Network Analysis:
#' Methods and Applications.} Cambridge: Cambridge University Press.
#' @keywords hplot graphs
#' @examples
#'
#' #Construct a sparse graph
#' m<-matrix(rbinom(100,1,1.5/9),10)
#' diag(m)<-0
#' g<-network(m)
#'
#' #Plot the graph
#' plot(g)
#'
#' #Load Padgett's marriage data
#' data(flo)
#' nflo<-network(flo)
#' #Display the network, indicating degree and flagging the Medicis
#' plot(nflo, vertex.cex=apply(flo,2,sum)+1, usearrows=FALSE,
#' vertex.sides=3+apply(flo,2,sum),
#' vertex.col=2+(network.vertex.names(nflo)=="Medici"))
#' @export plot.network
#' @export
plot.network <- function(x, ...){
plot.network.default(x, ...)
}
#Two-dimensional network visualization; this was originally a direct port of the gplot
#routine from sna (Carter T. Butts <buttsc@uci.edu>)
#' @rdname plot.network
#' @usage \method{plot.network}{default}(x, attrname = NULL,
#' label = network.vertex.names(x), coord = NULL, jitter = TRUE,
#' thresh = 0, usearrows = TRUE, mode = "fruchtermanreingold",
#' displayisolates = TRUE, interactive = FALSE, xlab = NULL,
#' ylab = NULL, xlim = NULL, ylim = NULL, pad = 0.2, label.pad = 0.5,
#' displaylabels = !missing(label), boxed.labels = FALSE, label.pos = 0,
#' label.bg = "white", vertex.sides = 50, vertex.rot = 0, vertex.lwd=1,
#' arrowhead.cex = 1, label.cex = 1, loop.cex = 1, vertex.cex = 1,
#' edge.col = 1, label.col = 1, vertex.col = 2, label.border = 1,
#' vertex.border = 1, edge.lty = 1, label.lty = NULL, vertex.lty = 1,
#' edge.lwd = 0, edge.label = NULL, edge.label.cex = 1,
#' edge.label.col = 1, label.lwd = par("lwd"), edge.len = 0.5,
#' edge.curve = 0.1, edge.steps = 50, loop.steps = 20,
#' object.scale = 0.01, uselen = FALSE, usecurve = FALSE,
#' suppress.axes = TRUE, vertices.last = TRUE, new = TRUE,
#' layout.par = NULL, \dots)
#' @export plot.network.default
#' @rawNamespace S3method(plot.network,default)
plot.network.default<-function(x,
attrname=NULL,
label=network.vertex.names(x),
coord=NULL,
jitter=TRUE,
thresh=0,
usearrows=TRUE,
mode="fruchtermanreingold",
displayisolates=TRUE,
interactive=FALSE,
xlab=NULL,
ylab=NULL,
xlim=NULL,
ylim=NULL,
pad=0.2,
label.pad=0.5,
displaylabels=!missing(label),
boxed.labels=FALSE,
label.pos=0,
label.bg="white",
vertex.sides=50,
vertex.rot=0,
vertex.lwd=1,
arrowhead.cex=1,
label.cex=1,
loop.cex=1,
vertex.cex=1,
edge.col=1,
label.col=1,
vertex.col=2,
label.border=1,
vertex.border=1,
edge.lty=1,
label.lty=NULL,
vertex.lty=1,
edge.lwd=0,
edge.label=NULL,
edge.label.cex=1,
edge.label.col=1,
label.lwd=par("lwd"),
edge.len=0.5,
edge.curve=0.1,
edge.steps=50,
loop.steps=20,
object.scale=0.01,
uselen=FALSE,
usecurve=FALSE,
suppress.axes=TRUE,
vertices.last=TRUE,
new=TRUE,
layout.par=NULL,
...){
#Check to see that things make sense
if(!is.network(x))
stop("plot.network requires a network object.")
if(network.size(x)==0)
stop("plot.network called on a network of order zero - nothing to plot.")
#Turn the annoying locator bell off, and remove recursion limit
old.opts <- options(locatorBell=FALSE,expressions=500000)
on.exit(options(old.opts))
#Create a useful interval inclusion operator
"%iin%"<-function(x,int) (x>=int[1])&(x<=int[2])
#Extract the network to be displayed
if(is.hyper(x)){ #Is this a hypergraph? If so, use two-mode form.
#Create a new graph to store the two-mode structure
xh<-network.initialize(network.size(x)+sum(!sapply(x$mel, is.null)),
directed=is.directed(x))
#Port attributes, in case we need them
for(i in list.vertex.attributes(x)){
set.vertex.attribute(xh,attrname=i,
value=get.vertex.attribute(x,attrname=i,null.na=FALSE,unlist=FALSE),
v=1:network.size(x))
}
for(i in list.network.attributes(x)){
if(!(i%in%c("bipartite","directed","hyper","loops","mnext","multiple",
"n")))
set.network.attribute(xh,attrname=i,
value=get.network.attribute(x,attrname=i,unlist=FALSE))
}
#Now, import the edges
cnt<-1
for(i in 1:length(x$mel)){ #Not a safe way to do this, long-term
if(!is.null(x$mel[[i]])){
for(j in x$mel[[i]]$outl){
if(!is.adjacent(xh,j,network.size(x)+cnt))
add.edge(xh,j,network.size(x)+cnt,names.eval=names(x$mel[[i]]$atl),
vals.eval=x$mel[[i]]$atl)
}
for(j in x$mel[[i]]$inl){
if(!is.adjacent(xh,network.size(x)+cnt,j)){
add.edge(xh,network.size(x)+cnt,j,names.eval=names(x$mel[[i]]$atl),
vals.eval=x$mel[[i]]$atl)
}
}
cnt<-cnt+1 #Increment the edge counter
}
}
cnt<-cnt-1
if(length(label)==network.size(x)) #Fix labels, if needed
label<-c(label,paste("e",1:cnt,sep=""))
xh%v%"vertex.names"<-c(x%v%"vertex.names",paste("e",1:cnt,sep=""))
x<-xh
n<-network.size(x)
d<-as.matrix.network(x,matrix.type="edgelist",attrname=attrname)
if(!is.directed(x))
usearrows<-FALSE
}else if(is.bipartite(x)){
n<-network.size(x)
d<-as.matrix.network(x,matrix.type="edgelist",attrname=attrname)
usearrows<-FALSE
}else{
n<-network.size(x)
d<-as.matrix.network(x,matrix.type="edgelist",attrname=attrname)
if(!is.directed(x))
usearrows<-FALSE
}
#Make sure that edge values are in place, matrix has right shape, etc.
if(NCOL(d)==2){
if(NROW(d)==0)
d<-matrix(nrow=0,ncol=3)
else
d<-cbind(d,rep(1,NROW(d)))
}
diag<-has.loops(x) #Check for existence of loops
#Replace NAs with 0s
d[is.na(d)]<-0
#Determine which edges should be used when plotting
edgetouse<-d[,3]>thresh
d<-d[edgetouse,,drop=FALSE]
#Save original matrix, which we may use below
d.raw<-d
#Determine coordinate placement
if(!is.null(coord)){ #If the user has specified coords, override all other considerations
cx<-coord[,1]
cy<-coord[,2]
}else{ #Otherwise, use the specified layout function
layout.fun<-try(match.fun(paste("network.layout.",mode,sep="")), silent=TRUE)
if(inherits(layout.fun,"try-error"))
stop("Error in plot.network.default: no layout function for mode ",mode)
temp<-layout.fun(x,layout.par)
cx<-temp[,1]
cy<-temp[,2]
}
#Jitter the coordinates if need be
if(jitter){
cx<-jitter(cx)
cy<-jitter(cy)
}
#Which nodes should we use?
use<-displayisolates|(((sapply(x$iel,length)+sapply(x$oel,length))>0))
#Deal with axis labels
if(is.null(xlab))
xlab=""
if(is.null(ylab))
ylab=""
#Set limits for plotting region
if(is.null(xlim))
xlim<-c(min(cx[use])-pad,max(cx[use])+pad) #Save x, y limits
if(is.null(ylim))
ylim<-c(min(cy[use])-pad,max(cy[use])+pad)
xrng<-diff(xlim) #Force scale to be symmetric
yrng<-diff(ylim)
xctr<-(xlim[2]+xlim[1])/2 #Get center of plotting region
yctr<-(ylim[2]+ylim[1])/2
if(xrng<yrng)
xlim<-c(xctr-yrng/2,xctr+yrng/2)
else
ylim<-c(yctr-xrng/2,yctr+xrng/2)
baserad<-min(diff(xlim),diff(ylim))*object.scale #Extract "base radius"
#Create the base plot, if needed
if(new){ #If new==FALSE, we add to the existing plot; else create a new one
plot(0,0,xlim=xlim,ylim=ylim,type="n",xlab=xlab,ylab=ylab,asp=1, axes=!suppress.axes,...)
}
# force lazy evaluation of display labels arg before we change value of labels
displaylabels<-displaylabels
#Fill out vertex vectors; assume we're using attributes if chars used
# this is done with the plotArgs.network so we can standarize it
label <-plotArgs.network(x,'label',label)
vertex.cex <- plotArgs.network(x,'vertex.cex',vertex.cex)
vertex.radius <-rep(baserad*vertex.cex,length.out=n) #Create vertex radii
vertex.sides <- plotArgs.network(x,'vertex.sides',vertex.sides)
vertex.border <- plotArgs.network(x,'vertex.border',vertex.border)
vertex.col <- plotArgs.network(x,'vertex.col',vertex.col)
vertex.lty <- plotArgs.network(x,'vertex.lty',vertex.lty)
vertex.rot <- plotArgs.network(x,'vertex.rot',vertex.rot)
vertex.lwd <- plotArgs.network(x,'vertex.lwd',vertex.lwd)
loop.cex <- plotArgs.network(x,'loop.cex',loop.cex)
label.col <- plotArgs.network(x,'label.col',label.col)
label.border<-plotArgs.network(x,'label.border',label.border)
label.bg <- plotArgs.network(x,'label.bg',label.bg)
#Plot vertices now, if desired
if(!vertices.last)
network.vertex(cx[use],cy[use],radius=vertex.radius[use], sides=vertex.sides[use],col=vertex.col[use],border=vertex.border[use],lty=vertex.lty[use],rot=vertex.rot[use], lwd=vertex.lwd[use])
#Generate the edges and their attributes
# TODO: initialize to full length, or sapply code below
# don't append in loop, no wonder is slow.
nDrawEdges<-NROW(d)
px0<-numeric(nDrawEdges) #Create position vectors (tail, head)
py0<-numeric(nDrawEdges)
px1<-numeric(nDrawEdges)
py1<-numeric(nDrawEdges)
e.lwd<-numeric(nDrawEdges) #Create edge attribute vectors
e.curv<-numeric(nDrawEdges)
e.type<-numeric(nDrawEdges)
e.col<-character(nDrawEdges)
e.hoff<-numeric(nDrawEdges) #Offset radii for heads
e.toff<-numeric(nDrawEdges) #Offset radii for tails
e.diag<-logical(nDrawEdges) #Indicator for self-ties
e.rad<-numeric(nDrawEdges) #Edge radius (only used for loops)
if(NROW(d)>0){
#Edge color
edge.col<-plotArgs.network(x,'edge.col',edge.col,d=d)
#Edge line type
edge.lty<-plotArgs.network(x,'edge.lty',edge.lty,d=d)
#Edge line width
edge.lwd<-plotArgs.network(x,'edge.lwd',edge.lwd,d=d)
#Edge curve
# TODO: can't move this into prepare plot args becaue it also sets the e.curve.as.mult
# but I think it could be refactored to use the d[] array as the other edge functions do
if(!is.null(edge.curve)){
if(length(dim(edge.curve))==2){
edge.curve<-edge.curve[d[,1:2]]
e.curv.as.mult<-FALSE
}else{
if(length(edge.curve)==1)
e.curv.as.mult<-TRUE
else
e.curv.as.mult<-FALSE
edge.curve<-rep(edge.curve,length.out=NROW(d))
}
}else if(is.character(edge.curve)&&(length(edge.curve)==1)){
temp<-edge.curve
edge.curve<-(x%e%edge.curve)[edgetouse]
if(all(is.na(edge.curve)))
stop("Attribute '",temp,"' had illegal missing values for edge.curve or was not present in plot.network.default.")
e.curv.as.mult<-FALSE
}else{
edge.curve<-rep(0,length.out=NROW(d))
e.curv.as.mult<-FALSE
}
# only evaluate edge label stuff if we will draw label
if(!is.null(edge.label)){
#Edge label
edge.label<-plotArgs.network(x,'edge.label',edge.label,d=d)
#Edge label color
edge.label.col<-plotArgs.network(x,'edge.label.col',edge.label.col,d=d)
#Edge label cex
edge.label.cex<-plotArgs.network(x,'edge.label.cex',edge.label.cex,d=d)
} # end edge label setup block
#Proceed with edge setup
dist<-((cx[d[,1]]-cx[d[,2]])^2+(cy[d[,1]]-cy[d[,2]])^2)^0.5 #Get the inter-point distances for curves
tl<-d.raw*dist #Get rescaled edge lengths
tl.max<-max(tl) #Get maximum edge length
for(i in 1:NROW(d)){
if(use[d[i,1]]&&use[d[i,2]]){ #Plot edges for displayed vertices (wait,doesn't 'use' track isolates, which don't have edges anyway?)
px0[i]<-as.double(cx[d[i,1]]) #Store endpoint coordinates
py0[i]<-as.double(cy[d[i,1]])
px1[i]<-as.double(cx[d[i,2]])
py1[i]<-as.double(cy[d[i,2]])
e.toff[i]<-vertex.radius[d[i,1]] #Store endpoint offsets
e.hoff[i]<-vertex.radius[d[i,2]]
e.col[i]<-edge.col[i] #Store other edge attributes
e.type[i]<-edge.lty[i]
e.lwd[i]<-edge.lwd[i]
e.diag[i]<-d[i,1]==d[i,2] #Is this a loop?
e.rad[i]<-vertex.radius[d[i,1]]*loop.cex[d[i,1]]
if(uselen){ #Should we base curvature on interpoint distances?
if(tl[i]>0){
e.len<-dist[i]*tl.max/tl[i]
e.curv[i]<-edge.len*sqrt((e.len/2)^2-(dist[i]/2)^2)
}else{
e.curv[i]<-0
}
}else{ #Otherwise, use prespecified edge.curve
if(e.curv.as.mult) #If it's a scalar, multiply by edge str
e.curv[i]<-edge.curve[i]*d.raw[i]
else
e.curv[i]<-edge.curve[i]
}
}
}
}# end edges block
#Plot loops for the diagonals, if diag==TRUE, rotating wrt center of mass
if(diag&&(length(px0)>0)&&sum(e.diag>0)){ #Are there any loops present?
network.loop(as.vector(px0)[e.diag],as.vector(py0)[e.diag], length=1.5*baserad*arrowhead.cex,angle=25,width=e.lwd[e.diag]*baserad/10,col=e.col[e.diag],border=e.col[e.diag],lty=e.type[e.diag],offset=e.hoff[e.diag],edge.steps=loop.steps,radius=e.rad[e.diag],arrowhead=usearrows,xctr=mean(cx[use]),yctr=mean(cy[use]))
if(!is.null(edge.label)){
network.edgelabel(px0,py0,0,0,edge.label[e.diag],directed=is.directed(x),cex=edge.label.cex[e.diag],col=edge.label.col[e.diag],loops=TRUE)
}
}
#Plot standard (i.e., non-loop) edges
if(length(px0)>0){ #If edges are present, remove loops from consideration
px0<-px0[!e.diag]
py0<-py0[!e.diag]
px1<-px1[!e.diag]
py1<-py1[!e.diag]
e.curv<-e.curv[!e.diag]
e.lwd<-e.lwd[!e.diag]
e.type<-e.type[!e.diag]
e.col<-e.col[!e.diag]
e.hoff<-e.hoff[!e.diag]
e.toff<-e.toff[!e.diag]
e.rad<-e.rad[!e.diag]
}
if(!usecurve&!uselen){ #Straight-line edge case
if(length(px0)>0){
network.arrow(as.vector(px0),as.vector(py0),as.vector(px1), as.vector(py1),length=2*baserad*arrowhead.cex,angle=20,col=e.col,border=e.col,lty=e.type,width=e.lwd*baserad/10,offset.head=e.hoff,offset.tail=e.toff,arrowhead=usearrows)
if(!is.null(edge.label)){
network.edgelabel(px0,py0,px1,py1,edge.label[!e.diag],directed=is.directed(x),cex=edge.label.cex[!e.diag],col=edge.label.col[!e.diag])
}
}
}else{ #Curved edge case
if(length(px0)>0){
network.arrow(as.vector(px0),as.vector(py0),as.vector(px1), as.vector(py1),length=2*baserad*arrowhead.cex,angle=20,col=e.col,border=e.col,lty=e.type,width=e.lwd*baserad/10,offset.head=e.hoff,offset.tail=e.toff,arrowhead=usearrows,curve=e.curv,edge.steps=edge.steps)
if(!is.null(edge.label)){
network.edgelabel(px0,py0,px1,py1,edge.label[!e.diag],directed=is.directed(x),cex=edge.label.cex[!e.diag],col=edge.label.col[!e.diag],curve=e.curv)
}
}
}
#Plot vertices now, if we haven't already done so
if(vertices.last)
network.vertex(cx[use],cy[use],radius=vertex.radius[use], sides=vertex.sides[use],col=vertex.col[use],border=vertex.border[use],lty=vertex.lty[use],rot=vertex.rot[use], lwd=vertex.lwd[use])
#Plot vertex labels, if needed
if(displaylabels&(!all(label==""))&(!all(use==FALSE))){
if (label.pos==0){
xhat <- yhat <- rhat <- rep(0,n)
#Set up xoff yoff and roff when we get odd vertices
xoff <- cx[use]-mean(cx[use])
yoff <- cy[use]-mean(cy[use])
roff <- sqrt(xoff^2+yoff^2)
#Loop through vertices
for (i in (1:n)[use]){
#Find all in and out ties that aren't loops
ij <- unique(c(d[d[,2]==i&d[,1]!=i,1],d[d[,1]==i&d[,2]!=i,2]))
ij.n <- length(ij)
if (ij.n>0) {
#Loop through all ties and add each vector to label direction
for (j in ij){
dx <- cx[i]-cx[j]
dy <- cy[i]-cy[j]
dr <- sqrt(dx^2+dy^2)
xhat[i] <- xhat[i]+dx/dr
yhat[i] <- yhat[i]+dy/dr
}
#Take the average of all the ties
xhat[i] <- xhat[i]/ij.n
yhat[i] <- yhat[i]/ij.n
rhat[i] <- sqrt(xhat[i]^2+yhat[i]^2)
if (!is.nan(rhat[i]) && rhat[i]!=0) { # watch out for NaN when vertices have same position
# normalize direction vector
xhat[i] <- xhat[i]/rhat[i]
yhat[i] <- yhat[i]/rhat[i]
} else { #if no direction, make xhat and yhat away from center
xhat[i] <- xoff[i]/roff[i]
yhat[i] <- yoff[i]/roff[i]
}
} else { #if no ties, make xhat and yhat away from center
xhat[i] <- xoff[i]/roff[i]
yhat[i] <- yoff[i]/roff[i]
}
if ( is.nan(xhat[i]) || xhat[i]==0 ) xhat[i] <- .01 #jitter to avoid labels on points
if (is.nan(yhat[i]) || yhat[i]==0 ) yhat[i] <- .01
}
xhat <- xhat[use]
yhat <- yhat[use]
} else if (label.pos<5) {
xhat <- switch(label.pos,0,-1,0,1)
yhat <- switch(label.pos,-1,0,1,0)
} else if (label.pos==6) {
xoff <- cx[use]-mean(cx[use])
yoff <- cy[use]-mean(cy[use])
roff <- sqrt(xoff^2+yoff^2)
xhat <- xoff/roff
yhat <- yoff/roff
} else {
xhat <- 0
yhat <- 0
}
os<-par()$cxy*mean(label.cex,na.rm = TRUE) # don't think this is actually used?
lw<-strwidth(label[use],cex=label.cex)/2
lh<-strheight(label[use],cex=label.cex)/2
if(boxed.labels){
rect(cx[use]+xhat*vertex.radius[use]-(lh*label.pad+lw)*((xhat<0)*2+ (xhat==0)*1),
cy[use]+yhat*vertex.radius[use]-(lh*label.pad+lh)*((yhat<0)*2+ (yhat==0)*1),
cx[use]+xhat*vertex.radius[use]+(lh*label.pad+lw)*((xhat>0)*2+ (xhat==0)*1),
cy[use]+yhat*vertex.radius[use]+(lh*label.pad+lh)*((yhat>0)*2+ (yhat==0)*1),
col=label.bg,border=label.border,lty=label.lty,lwd=label.lwd)
}
text(cx[use]+xhat*vertex.radius[use]+(lh*label.pad+lw)*((xhat>0)-(xhat<0)),
cy[use]+yhat*vertex.radius[use]+(lh*label.pad+lh)*((yhat>0)-(yhat<0)),
label[use],cex=label.cex,col=label.col,offset=0)
}
#If interactive, allow the user to mess with things
if(interactive&&((length(cx)>0)&&(!all(use==FALSE)))){
#Set up the text offset increment
os<-c(0.2,0.4)*par()$cxy
#Get the location for text messages, and write to the screen
textloc<-c(min(cx[use])-pad,max(cy[use])+pad)
tm<-"Select a vertex to move, or click \"Finished\" to end."
tmh<-strheight(tm)
tmw<-strwidth(tm)
text(textloc[1],textloc[2],tm,adj=c(0,0.5)) #Print the initial instruction
fm<-"Finished"
finx<-c(textloc[1],textloc[1]+strwidth(fm))
finy<-c(textloc[2]-3*tmh-strheight(fm)/2,textloc[2]-3*tmh+strheight(fm)/2)
finbx<-finx+c(-os[1],os[1])
finby<-finy+c(-os[2],os[2])
rect(finbx[1],finby[1],finbx[2],finby[2],col="white")
text(finx[1],mean(finy),fm,adj=c(0,0.5))
#Get the click location
clickpos<-unlist(locator(1))
#If the click is in the "finished" box, end our little game. Otherwise,
#relocate a vertex and redraw.
if((clickpos[1]%iin%finbx)&&(clickpos[2]%iin%finby)){
cl<-match.call() #Get the args of the current function
cl$interactive<-FALSE #Turn off interactivity
cl$coord<-cbind(cx,cy) #Set the coordinates
cl$x<-x #"Fix" the data array
return(eval.parent(cl)) #Execute the function and return
}else{
#Figure out which vertex was selected
clickdis<-sqrt((clickpos[1]-cx[use])^2+(clickpos[2]-cy[use])^2)
selvert<-match(min(clickdis),clickdis)
#Create usable labels, if the current ones aren't
if(all(label==""))
label<-1:n
#Clear out the old message, and write a new one
rect(textloc[1],textloc[2]-tmh/2,textloc[1]+tmw,textloc[2]+tmh/2, border="white",col="white")
tm<-"Where should I move this vertex?"
tmh<-strheight(tm)
tmw<-strwidth(tm)
text(textloc[1],textloc[2],tm,adj=c(0,0.5))
fm<-paste("Vertex",label[use][selvert],"selected")
finx<-c(textloc[1],textloc[1]+strwidth(fm))
finy<-c(textloc[2]-3*tmh-strheight(fm)/2,textloc[2]-3*tmh+ strheight(fm)/2)
finbx<-finx+c(-os[1],os[1])
finby<-finy+c(-os[2],os[2])
rect(finbx[1],finby[1],finbx[2],finby[2],col="white")
text(finx[1],mean(finy),fm,adj=c(0,0.5))
#Get the destination for the new vertex
clickpos<-unlist(locator(1))
#Set the coordinates accordingly
cx[use][selvert]<-clickpos[1]
cy[use][selvert]<-clickpos[2]
#Iterate (leaving interactivity on)
cl<-match.call() #Get the args of the current function
cl$coord<-cbind(cx,cy) #Set the coordinates
cl$x<-x #"Fix" the data array
return(eval.parent(cl)) #Execute the function and return
}
}
#Return the vertex positions, should they be needed
invisible(cbind(cx,cy))
}
# moving all of the plot argument checking and expansion into a single function
# so that it will be acessible from other plot-related tools (like ndtv)
# argName = character named of argument to be checked/expaneded
# argValue = value passed in by user, to be processed/expanded
# d is an edgelist matrix of edge values optionally used by some edge attribute functions
# edgetouse the set of edge ids to be used (in case some edges are not being shown)
#' Expand and transform attributes of networks to values appropriate for
#' aguments to plot.network
#'
#' This is primairly an internal function called by \code{plot.network} or by
#' external packages such as \code{ndtv} that want to prepare
#' \code{plot.network} graphic arguments in a standardized way.
#'
#' Given a network object, the name of graphic parameter argument to
#' \code{plot.network} and value, it will if necessary transform the value, or
#' extract it from the network, according to the description in
#' \code{\link{plot.network}}. For some attributes, if the value is the name of
#' a vertex or edge attribute, the appropriate values will be extracted from
#' the network before transformation.
#'
#' @rdname preparePlotArgs
#' @name plotArgs.network
#'
#' @param x a \code{network} object which is going to be plotted
#' @param argName character, the name of \code{plot.network} graphic parameter
#' @param argValue value for the graphic paramter named in \code{argName} which
#' to be transformed/prepared. For many attributes, if this is a single
#' character vector it will be assumed to be the name of a vertex or edge
#' attribute to be extracted and transformed
#' @param d is an edgelist matrix of edge values optionally used by some edge
#' attribute functions
#' @param edgetouse numeric vector giving set of edge ids to be used (in case
#' some edges are not being shown) required by some attributes
#' @return returns a vector with length corresponding to the number of vertices
#' or edges (depending on the paramter type) giving the appropriately prepared
#' values for the parameter type. If the values or specified attribute can not
#' be processed correctly, and Error may occur.
#' @author skyebend@@uw.edu
#' @seealso See also \code{\link{plot.network}}
#' @examples
#'
#' net<-network.initialize(3)
#' set.vertex.attribute(net,'color',c('red','green','blue'))
#' set.vertex.attribute(net,'charm',1:3)
#' # replicate a single colorname value
#' plotArgs.network(net,'vertex.col','purple')
#' # map the 'color' attribute to color
#' plotArgs.network(net,'vertex.col','color')
#' # similarly for a numeric attribute ...
#' plotArgs.network(net,'vertex.cex',12)
#' plotArgs.network(net,'vertex.cex','charm')
#'
#' @export plotArgs.network
plotArgs.network<-function(x,argName, argValue,d=NULL,edgetouse=NULL){
n<-network.size(x)
# count the number of edges
# not sure if nrow d is every differnt, than network edgecount, but just being safe
if(!is.null(d)){
nE<-NROW(d)
} else {
nE<-network.edgecount(x)
}
if(is.null(edgetouse)){
edgetouse<-seq_len(nE) # use all the edges
}
# if d exists, it may need to be subset to the number of edges
if (!is.null(d)){
d<-d[edgetouse,,drop=FALSE]
}
# assign the value to a local variable with the appropriate name
assign(argName,argValue)
#Fill out vertex vectors; assume we're using attributes if chars used
# TODO: only one of the code blocks below should execute, set up as a switch?
switch(argName,
# ----- vertex labels ---------------------------
label=if(is.character(label)&(length(label)==1)){
temp<-label
if(temp%in%list.vertex.attributes(x)){
label <- rep(get.vertex.attribute(x,temp),length.out=n)
if(all(is.na(label))){
stop("Attribute '",temp,"' had illegal missing values for label or was not present in plot.network.default.")
}
} else { # didn't match with a vertex attribute, assume we are supposed to replicate it
label <- rep(label,length.out=n)
}
}else{
label <- rep(as.character(label),length.out=n)
}
,
# ------ vertex sizes (vertex.cex) --------------------
vertex.cex=if(is.character(vertex.cex)&(length(vertex.cex)==1)){
temp<-vertex.cex
vertex.cex <- rep(get.vertex.attribute(x,vertex.cex),length.out=n)
if(all(is.na(vertex.cex)))
stop("Attribute '",temp,"' had illegal missing values for vertex.cex or was not present in plot.network.default.")
}else
vertex.cex <- rep(vertex.cex,length.out=n)
,
# ------ vertex sides (number of sides for polygon) ---------
vertex.sides=if(is.character(vertex.sides)&&(length(vertex.sides==1))){
temp<-vertex.sides
vertex.sides <- rep(get.vertex.attribute(x,vertex.sides),length.out=n)
if(all(is.na(vertex.sides)))
stop("Attribute '",temp,"' had illegal missing values for vertex.sides or was not present in plot.network.default.")
}else
vertex.sides <- rep(vertex.sides,length.out=n)
,
# --------- vertex border --------------------
vertex.border=if(is.character(vertex.border)&&(length(vertex.border)==1)){
temp<-vertex.border
vertex.border <- rep(get.vertex.attribute(x,vertex.border),length.out=n)
if(all(is.na(vertex.border)))
vertex.border <- rep(temp,length.out=n) #Assume it was a color word
else{
if(!all(is.color(vertex.border),na.rm=TRUE))
vertex.border<-as.color(vertex.border)
}
}else
vertex.border <- rep(vertex.border,length.out=n)
,
# -------- vertex color ------------------------
vertex.col=if(is.character(vertex.col)&&(length(vertex.col)==1)){
temp<-vertex.col
vertex.col <- rep(get.vertex.attribute(x,vertex.col),length.out=n)
if(all(is.na(vertex.col)))
vertex.col <- rep(temp,length.out=n) #Assume it was a color word
else{
if(!all(is.color(vertex.col),na.rm=TRUE))
vertex.col<-as.color(vertex.col)
}
}else
vertex.col <- rep(vertex.col,length.out=n)
,
# ------- vertex line type (vertex.lty) --------------------
vertex.lty=if(is.character(vertex.lty)&&(length(vertex.lty)==1)){
temp<-vertex.lty
vertex.lty <- rep(get.vertex.attribute(x,vertex.lty),length.out=n)
if(all(is.na(vertex.lty)))
stop("Attribute '",temp,"' had illegal missing values for vertex.col or was not present in plot.network.default.")
}else
vertex.lty <- rep(vertex.lty,length.out=n)
,
# ------- vertex rotation --------------------------------------
vertex.rot=if(is.character(vertex.rot)&&(length(vertex.rot)==1)){
temp<-vertex.rot
vertex.rot <- rep(get.vertex.attribute(x,vertex.rot),length.out=n)
if(all(is.na(vertex.rot)))
stop("Attribute '",temp,"' had illegal missing values for vertex.rot or was not present in plot.network.default.")
}else
vertex.rot <- rep(vertex.rot,length.out=n)
,
# -------- vertex line width --------------------------
vertex.lwd=if(is.character(vertex.lwd)&&(length(vertex.lwd)==1)){
temp<-vertex.lwd
vertex.lwd <- rep(get.vertex.attribute(x,vertex.lwd),length.out=n)
if(all(is.na(vertex.lwd)))
stop("Attribute '",temp,"' had illegal missing values for vertex.lwd or was not present in plot.network.default.")
}else
vertex.lwd <- rep(vertex.lwd,length.out=n)
,
# -------- vertex self-loop size -----------------------
loop.cex=if(is.character(loop.cex)&&(length(loop.cex)==1)){
temp<-loop.cex
loop.cex <- rep(get.vertex.attribute(x,loop.cex),length.out=n)
if(all(is.na(loop.cex)))
stop("Attribute ",temp," had illegal missing values for loop.cex or was not present in plot.network.default.")
}else
loop.cex <- rep(loop.cex,length.out=n)
,
# --------- vertex label color -----------------------------
label.col=if(is.character(label.col)&&(length(label.col)==1)){
temp<-label.col
label.col <- rep(get.vertex.attribute(x,label.col),length.out=n)
if(all(is.na(label.col)))
label.col <- rep(temp,length.out=n) #Assume it was a color word
else{
if(!all(is.color(label.col),na.rm=TRUE))
label.col<-as.color(label.col)
}
}else
label.col <- rep(label.col,length.out=n)
,
# -------- vertex label border ------------------------------
label.border=if(is.character(label.border)&&(length(label.border)==1)){
temp<-label.border
label.border <- rep(get.vertex.attribute(x,label.border),length.out=n)
if(all(is.na(label.border)))
label.border <- rep(temp,length.out=n) #Assume it was a color word
else{
if(!all(is.color(label.border),na.rm=TRUE))
label.border<-as.color(label.border)
}
}else{
label.border <- rep(label.border,length.out=n)
}
,
# ------- vertex label border background color ----------------
label.bg=if(is.character(label.bg)&&(length(label.bg)==1)){
temp<-label.bg
label.bg <- rep(get.vertex.attribute(x,label.bg),length.out=n)
if(all(is.na(label.bg)))
label.bg <- rep(temp,length.out=n) #Assume it was a color word
else{
if(!all(is.color(label.bg),na.rm=TRUE))
label.bg<-as.color(label.bg)
}
}else{
label.bg <- rep(label.bg,length.out=n)
}
,
# ------ Edge color---------
edge.col=if(length(dim(edge.col))==2) #Coerce edge.col/edge.lty to vector form
edge.col<-edge.col[d[,1:2]]
else if(is.character(edge.col)&&(length(edge.col)==1)){
temp<-edge.col
edge.col<-x%e%edge.col
if(!is.null(edge.col)){
edge.col<-edge.col[edgetouse]
if(!all(is.color(edge.col),na.rm=TRUE))
edge.col<-as.color(edge.col)
}else{
edge.col<-rep(temp,length.out=nE) #Assume it was a color word
}
}else{
edge.col<-rep(edge.col,length.out=nE)
}
,
# ----------- Edge line type ------------------
edge.lty=if(length(dim(edge.lty))==2){
edge.lty<-edge.lty[d[,1:2]]
}else if(is.character(edge.lty)&&(length(edge.lty)==1)){
temp<-edge.lty
edge.lty<-(x%e%edge.lty)[edgetouse]
if(all(is.na(edge.lty)))
stop("Attribute '",temp,"' had illegal missing values for edge.lty or was not present in plot.network.default.")
}else{
edge.lty<-rep(edge.lty,length.out=nE)
}
,
# ----------- Edge line width ------
edge.lwd=if(length(dim(edge.lwd))==2){
edge.lwd<-edge.lwd[d[,1:2]] # what is going on here? aren't these the incident vertices? # for later matrix lookup?
}else if(is.character(edge.lwd)&&(length(edge.lwd)==1)){
temp<-edge.lwd
edge.lwd<-(x%e%edge.lwd)[edgetouse]
if(all(is.na(edge.lwd))){
stop("Attribute '",temp,"' had illegal missing values for edge.lwd or was not present in plot.network.default.")
}
}else{
if(length(edge.lwd)==1){ # if lwd has only one element..
if(edge.lwd>0){ # ... and that element > 0 ,use it as a scale factor for the edge values in d
# .. unless d is missing
if (!is.null(d)){
edge.lwd<-edge.lwd*d[,3]
} else {
# d is missing, so just replicate
}
edge.lwd<-rep(edge.lwd,length.out=nE)
}else{ # edge is zero or less, so set it to 1
edge.lwd<-rep(1,length.out=nE)
}
} else { # just replacte for the number of edges
edge.lwd<-rep(edge.lwd,length.out=nE)
}
}
,
# ----------- Edge curve---------------
edge.curve=if(!is.null(edge.curve)){
if(length(dim(edge.curve))==2){
edge.curve<-edge.curve[d[,1:2]]
e.curv.as.mult<-FALSE
}else{
if(length(edge.curve)==1){
e.curv.as.mult<-TRUE
}else{
e.curv.as.mult<-FALSE
}
edge.curve<-rep(edge.curve,length.out=nE)
}
}else if(is.character(edge.curve)&&(length(edge.curve)==1)){
temp<-edge.curve
edge.curve<-(x%e%edge.curve)[edgetouse]
if(all(is.na(edge.curve))){
stop("Attribute '",temp,"' had illegal missing values for edge.curve or was not present in plot.network.default.")
}
e.curv.as.mult<-FALSE
}else{
edge.curve<-rep(0,length.out=nE)
e.curv.as.mult<-FALSE
}
,
# -------- edge label ----------------------
edge.label=if(length(dim(edge.label))==2){ #Coerce edge.label to vector form
edge.label<-edge.label[d[,1:2]]
}else if(is.character(edge.label)&&(length(edge.label)==1)){
temp<-edge.label
edge.label<-x%e%edge.label
if(!is.null(edge.label)){
edge.label<-edge.label[edgetouse]
}else
edge.label<-rep(temp,length.out=nE) #Assume it was a value to replicate
}else if(is.logical(edge.label)&&(length(edge.label)==1)) {
if (edge.label){
# default to edge ids.
edge.label<-valid.eids(x)[edgetouse]
} else {
# don't draw edge labels if set to FALSE
edge.label<-NULL
}
}else{
# do nothing and hope for the best!
edge.label<-rep(edge.label,length.out=nE)
}
,
# ------ edge label color --------------------
#Edge label color
edge.label.col=if(length(dim(edge.label.col))==2){ #Coerce edge.label.col
edge.label.col<-edge.label.col[d[,1:2]]
} else if(is.character(edge.label.col)&&(length(edge.label.col)==1)){
temp<-edge.label.col
edge.label.col<-x%e%edge.label.col
if(!is.null(edge.label.col)){
edge.label.col<-edge.label.col[edgetouse]
if(!all(is.color(edge.label.col),na.rm=TRUE))
edge.label.col<-as.color(edge.label.col)
}else
edge.label.col<-rep(temp,length.out=nE) #Assume it was a color word
}else{
edge.label.col<-rep(edge.label.col,length.out=nE)
}
,
# ------- edge.label.cex --------------------
#Edge label cex
edge.label.cex=if(length(dim(edge.label.cex))==2)
edge.label.cex<-edge.label.cex[d[,1:2]]
else if(is.character(edge.label.cex)&&(length(edge.label.cex)==1)){
temp<-edge.label.cex
edge.label.cex<-(x%e%edge.label.cex)[edgetouse]
if(all(is.na(edge.label.cex)))
stop("Attribute '",temp,"' had illegal missing values for edge.label.cex or was not present in plot.network.default.")
}else{
edge.label.cex<-rep(edge.label.cex,length.out=nE)
}
# case in which none of the argument names match up
# stop('argument "',argName,'"" does not match with any of the plot.network arguments')
# can't error out, because this function will be called with non-network args, so just
# return the value passed in
) # end switch block
# now return the checked / expanded value
return(get(argName))
}
|